中科院研发秒级响应氢气传感器,阻止百亿氢气传感被垄断

2897 字丨阅读本文需 7 分钟

声表面波氢气传感器的技术优势在于快速响应与高灵敏度。声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点。将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

氢气作为一种清洁能源,在促进节能减排、调整能源产业结构、应对全球气候变化等方面具有广阔应用前景。

然而,使用氢气存在一个“痛点”。氢气本身具有易燃易爆、无色无味的性质,这使得氢气在泄漏时难以被察觉,累积后极易产生安全事故。更好地开发利用氢能,快速、高灵敏的氢气传感技术必不可少。

近日,传感器领域的重要期刊《Sensors and Actuators B:Chemical》上线了一篇重要论文,展现了氢气传感技术的新进展。中国科学院声学研究所超声学实验室研究员王文带领课题组在前期工作基础上,与南开大学教授杨大驰团队合作,将微纳声表面波器件技术与钯镍纳米线氢敏材料相结合,提出并研制了一种具有秒级响应、高灵敏和低检测限的新型声表面波氢气传感器。

目前氢传感技术难以满足实用需求

2019年仲夏之际,全球在20天内发生了3次氢气相关的爆炸事件。韩国一个氢燃料储存罐发生爆炸事故;美国一处化工厂储氢罐和氢气运输拖车发生爆炸和火灾;挪威首都奥斯陆郊外的一处加氢站发生爆炸。

如何安全利用氢气这一绿色清洁能源,成为人们关注的焦点。

王文告诉科技日报记者:“氢气易燃易爆。在空气中氢气浓度在4%—75%范围内极易发生爆炸,由氢气泄漏导致的安全事故时有发生。因此,使用氢能时必须进行实时监测,氢气传感器也就成为氢能应用中必不可少的关键部件。”

目前,典型氢气传感技术运用了催化、热导、电化学、电阻式及光学等方法。王文介绍道,这几种方法各有优缺点。

催化法传感器可稳定并快速检测浓度在4%以内的氢气,但对可燃性气体的选择性较差,易受抑制剂影响,且需较高的工作温度,难以满足氢能应用领域极高的安全与可靠性要求。

热导式传感器可在大范围内实现较为快速(约在20秒内)的氢气传感,但传感精度不高,对高热导率气体,例如氦、甲烷、一氧化碳等气体,会造成交叉敏感,也难以实现对1%以下浓度氢气的检测。

电化学传感器可以在常温下工作,且灵敏度较高,但响应速度较慢(约在70秒内),使用寿命也较短。而电阻式传感器虽然能实现秒级快速氢传感,但一般需高温工作环境(300摄氏度至800摄氏度),且选择性差、易中毒。

光学传感器的优势在于传感器件抗电磁干扰强,较安全,且灵敏度和测量精度高,能够达到实时响应。但是传感器体积较大,整体系统复杂且成本较高。

美国能源部2007年便制定了汽车以及固定式电力系统中氢气检测的性能指导要求。其中,最为关键的一条指明了对氢气传感器的性能要求——响应速度与恢复速度期望在1秒内,量程要求在0.1—10vol%。而现有的氢气传感器难以达到该要求。

“目前,氢传感技术在响应速度、使用量程及安全性等方面均难以满足氢泄漏监测的实用需求,新的氢传感技术与方法亟待发展。”王文说。

打造快速响应与高灵敏度的新型传感器

实际上,声波气敏技术作为声学领域的重要发展方向,王文和同事们对其前沿动态一点也不陌生。他和同事们一直深耕于此,在特异性气敏材料响应机制、多效应耦合的声表面波气敏效应及高性能声表面波气敏元件优化等方面的研究取得重要进展。

为了满足氢能发展的实用需求,研发更灵敏的氢气传感器,王文及其课题组加快了攻关步伐。他们找到了在氢敏材料方面有着较为深入研究的南开大学杨大驰教授的团队。

双方一拍即合。“自2016年起,我们就开始和杨大驰教授的团队合作,开展新型声表面波氢气传感器研究。”王文表示,中国科学院声学所的声表面波技术研究在国内处于优势地位,南开大学则在氢敏材料研究方面有多年积累。双方期望通过将声表面波器件技术与钯基纳米材料(一种氢敏材料)结合,探索出快速氢传感新方法,以解决现有氢传感技术所面临的技术难题。

“声表面波氢气传感器的技术优势在于快速响应与高灵敏度。”王文解释道,声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点,将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

“此外,声表面波氢气传感器还具备良好的重复性与选择性,以及小体积、低成本的技术特点。”王文说。

尽管思路和目标十分清晰,在研究过程中,王文及其课题组还是遇到了难题。“我们面临两个技术难点,一个是钯基氢敏材料的响应机制及设计方法,另一个是高性能的声表面波氢敏元件设计与制备。”

王文告诉记者,他们通过讨论和各种实验,解决了难题。例如,通过探索钯基材料及纳米调控机制,确定了纳米线制备方法;建立分析方法,对传感器功能结构进行优化。

团队最终成功研制出新型声表面波氢气传感器样机。

王文高兴地表示:“样机测试结果很好,验证了最初的设计思想。新型声表面波氢气传感器实现了对氢气检测的快速响应、高灵敏度及低检测限。”

多家企业早已布局

汉威科技作为国内气体传感器龙头企业,在氢能源领域已经开始布局,研发团队针对氢能源车用传感器进行不断创新,目前已经有新的传感器产品,并与国内知名车企达成合作,在新能源汽车的空气质量检测和锂电池泄漏监测方面实现应用。

目前,汉威科技的气体传感器在电池安全检测领域已得到了成熟应用,每台电动车根据电池大小和电池仓内空间大小的不同一般配备多个气体传感器。汉威科技前期与国内很多车企建立了沟通,包括产品送样、试用。未来,随着公司车规级16949认证体系通过,汉威科技将会进入相关车企的供应链体系,进而实现产品的批量供货。

由于国内车载氢气传感器起步偏晚,近年来国内氢燃料电池汽车采用的氢气传感器基本以进口为主,技术被垄断且价格昂贵。苏州纳格光电科技有限公司(下称“纳格公司”)作为国产车载氢气传感器的杰出企业,率先研制出具有自主知识产权的新型国产氢气传感器。

依据车规级氢气传感器最权威的美国标准“SAEJ3089CharacterizationofOn-BoardVehicularHydrogenSensors”,纳格公司氢气传感器于2020年上半年通过国内一家知名汽车集团全部严苛的车规标准测试和车用EMC测试,开始打破进口产品垄断,今年订单量显著上升,目前产品已经实现批量装车应用。

氢气传感器市场规模有多大?

氢气资源非常好,清洁、可再生,但它容易泄露,且爆炸范围非常宽,是目前波浪范围最宽的一种气体,只要和空气混合,达到 4%~75%的比例,就会发生爆炸,属于一级爆炸气体。所以,从制氢站、储氢站、运输车、加氢站,到氢燃料电池汽车都需要对氢气进行检测,尽早发现泄露,立马关掉阀门并发出警报,降低安全隐患。

此外,对于氢燃料电池汽车而言,氢气传感器不仅能用于监测气罐和电堆端氢气的泄露,还能用于检测排放尾气中的氢气浓度。

也就能根据这些监测的信息来实时分析电堆的性能和反应程度,从而及时调整相关输入指标或数据配置来实现车辆的安全、高效运行。

以氢燃料电池汽车为例,一般需要配置 3~5 个氢气检测模块。

此外,要研究车规级氢气传感器市场,我们就要与氢燃料电池汽车落地情况与趋势关联起来。根据国务院发布的新能源汽车产业蓝皮书

显示,到 2025 年,中国的氢燃料电池汽车总量要达到 5 万辆,到 2030 年,这个数字将上升为 100 万辆。因此,假设以 2030 年为时间节点,每辆车配置 3 个氢气检测模块的话,只是汽车方面的用量就要达到 300 万个,再加上整个产业链上氢气传感器的配套情况,保守估计将有 500~1000 万个的量。

单个模组价格方面,由于目前车规级氢气传感器处于被日本 FIS 和日本理研垄断的状态,日本理研的单价约为 5000 元左右,而日本 FIS 的单价则在 1500 元以上,如果是小批量则可能在 2000 元左右。

因此,假设以 2000 元作为单价计算的话,到 2030 年,中国氢燃料电池汽车对氢气传感器的需求价值约在 100 亿~200 亿元之间。

文章来源:高工氢燃料电池,汉威科技007,科技日报,智能传感

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...