从2D走向3D,NAND闪存将迎来“大改革”,行业巨头已经提前布局

微观人 2022-04-08

闪存三星电子nand

2927 字丨阅读本文需 7 分钟

几十年来,NAND-Flash 一直是低成本和大密度数据存储应用的主要技术。这种非易失性存储器存在于所有主要的电子终端市场,例如智能手机、服务器、PC、平板电脑和 USB 驱动器。在传统的计算机内存层次结构中,NAND-Flash 位于离中央处理器 (CPU) 最远的位置,与静态随机存取存储器 (SRAM) 和动态 RAM(动态随机存取存储器)相比,它相对便宜、速度慢且密集。

闪存领域的重要性体现在其在全球半导体资本支出(capex) 中的可观份额,数据显示,其约占了整个半导体市场支出的三分之一。它的成功与其不断扩展存储密度和成本的能力有关——这是 NAND 闪存技术发展的主要驱动力。大约每两年,NAND-Flash 行业就能够大幅提高位存储密度,以增加 Gbit/mm 2表示。

在此过程中,行业也已经引入了多项技术创新来保持这一趋势线。直到最近,NAND 闪存单元都以平面配置排列,使用浮栅晶体管为他们的记忆操作。浮栅晶体管由两个栅极组成:浮栅和控制栅。浮栅与晶体管结构的其余部分隔离,通常由多晶硅制成。控制门是“普通”晶体管门。存储单元的写入是通过向控制栅极施加脉冲来完成的,该脉冲基于隧道机制迫使电子进入(或离开)浮栅。电荷的存在(或不存在)会改变晶体管的阈值电压,这种变化称为内存窗口(memory window)。因此,信息被编码在浮栅晶体管的阈值电压中,并通过测量漏极电流来完成读取。存储在隔离栅极中的电荷长时间保持不变,使存储器具有非易失性特性。

20 多年来,浮栅一直是 2D-NAND 的常用方法,尽管其结构相当复杂,但仍可提供可靠的操作。通过减小浮栅单元的尺寸,可以提高位存储密度。然而,2D-NAND 缩放在大约 15nm 半间距处(half pitch)饱和,主要是因为阵列可靠性和静电干扰问题 。

走向 3D 以降低每比特成本

位存储密度的进一步增加是通过向三维过渡——而不是通过堆叠类似 2D-NAND 的层来实现的,因为这样做所需的工艺步骤数量会大大增加成本。“真正的” 3D-NAND背后的基本思想是堆叠单元以形成垂直串,从而达到更高的单位面积密度。在这种配置中,单元仍然由水平字线寻址。

最常见的制造方法,即环栅 (GAA) 垂直沟道方法,从生长氧化物/(牺牲)氮化物(字线)层堆叠开始。接下来,使用先进的干法蚀刻工具通过堆叠向下钻取圆柱形孔。沿孔的侧壁沉积隧道和俘获层。为了完成这个“punch和plug”的过程,在孔内沉积一个薄的多晶硅通道,然后是一个核心填充物,形成一个类似通心粉的结构。在下一步中,去除氮化物并用字线金属代替。在这些 GAA 结构中,圆柱形栅极环绕通道结构,这增强了载流子注入捕获层的能力——从而扩大了编程/擦除窗口。

通过添加更多层而不是缩小特征尺寸,NAND-Flash 行业放弃了传统的缩放方式。第一个商用 3D-NAND 产品于 2013 年推出,堆栈数为 24 个字线层 (128Gb)。根据供应商的不同,存在结构上的变化,以不同的名称(例如 V-NAND 和 BICS)而闻名。因此,3D-NAND 是第一个也是(迄今为止)唯一将真正的 3D 产品推向市场的技术。在接下来的几年中,为了保持位密度缩放趋势线,供应商已经将更多的层叠加在一起。最近,一些主要厂商推出了基于 176 层 3D-NAND 的产品,预计这种增加层数的趋势将在未来几年持续下去。

在此过程中,已经实施了额外的创新,以促进具有挑战性的 3D 工艺或允许进一步增加位密度。后者的一个例子是每个单元增加多达4 位的数量,这是 NAND 闪存技术的真正资产。例如,对于 4 位,多电平单元在每个单独的晶体管中使用 16 个离散电荷电平,这由足够大的内存窗口启用。

另一个值得注意的创新是用电荷陷阱单元( charge trap cell)代替浮栅单元,这涉及更简化的工艺流程。两种电池类型的工作原理相对相似,但在电荷捕获电池中,捕获层是绝缘体——通常是氮化硅——它在相邻电池之间提供的静电干扰较小。这个电荷陷阱单元现在是大多数 3D-NAND 结构的基础。

提高位存储密度

为了维持 NAND-Flash 路线图,一些主要厂商最近宣布将层数进一步增加到 500 层或更多。按照趋势线,这个数字将在未来十年内增加到 1,000。增加层数会带来更高的处理复杂性,它会挑战沉积和蚀刻工艺,并导致应力在层内积聚。为了应对其中的一些挑战,NAND-Flash 制造商最近开始将层数分成两(或更多)层,并将单独处理的层堆叠在一起。

然而,人们越来越担心如果没有重大创新,这种演变将逐渐降低 NAND-Flash 存储产品的成本效率。层数的增加需要对高度先进的沉积和蚀刻工具进行投资。堆叠多层的趋势将显着增加掩模数量,以及处理步骤和时间的数量。它还可能导致存储路线图放缓,直到 2030 年 1,000 层的堆栈才可用。

随着层数的增加,由于图案化和应力原因,存在缩小层厚度和控制堆叠高度的压力。这种z 间距缩放涉及降低堆叠中涉及的所有材料的高度,包括字线金属和氧化物,每种材料都会带来特定的挑战。

Z-pitch 缩放也可能通过 xy 尺寸的进一步减小来补充。这将需要对存储单元进行重大创新,而在 3D-NAND 开发的这些年中,这种创新一直保持不变。因此,行业正在探索新材料和单元架构作为当今 GAA NAND 闪存单元的替代品。一个值得注意的发展是沟槽式架构连接晶体管。

在这种架构中,存储单元不再是圆形的。它们是在沟槽的侧壁上实现的,在沟槽的两端有两个晶体管,这显著增加了位密度。从操作的角度来看,与圆形 GAA NAND-Flash 单元相比,此沟槽单元类似于平面单元单元(直立放置)。虽然它在电气特性(例如编程/擦除窗口)方面有轻微的损失,但与“GAA”单元相比,沟槽状配置中的单位单元面积在 xy 方向上可以减小。因此,沟槽单元被提出作为下一代 NAND-Flash 单元架构——有望将 xy 间距从今天的 140nm(有效)减小到约 30nm。

在更遥远的未来,我们预计将需要更多颠覆性的“后 NAND”创新(例如 imec 的基于液体的概念)来延续密度缩放趋势并进入太比特/mm 2时代。

凭借在 2D 和 3D-NAND-Flash 技术开发方面的长期记录,imec 的部分存储研发活动专注于继续传统的 GAA 3D-NAND-Flash 扩展路线图。通过建模和实验,该团队探索了基本 3D-NAND 单元的创新,以进一步减小 xyz 尺寸。通过建模和仿真工作,他们研究了引入新材料和架构对 NAND 闪存单元的电气性能的影响。建模还使团队能够增强基本理解,并识别和缓解 3D-NAND-Flash 单元扩展障碍。实验工作围绕具有有限层数的测试车辆构建(通常为 3 到 5 个,高度 300nm),与研究缩放对电存储单元指标的影响有关。

2022成为NAND Flash闪存抢跑之年

NAND盖楼大赛从未停止过,并且在芯片短缺的当下愈演愈烈。

这不,三星电子将在2022年底推出200层以上的第8代NAND闪存。

你方唱罢我登场!三星电子将在128层的单片存储器上叠加96层,推出224层的NAND闪存。与上一代176层NAND产品相比,224层NAND闪存可以将生产效率和数据传输速度将提高30%。

三星电子原计划在2021年末开始量产176层NAND,但考虑到市场情况,推迟到2022年第一季度。

此外,美光科技已经早抢先了一招,176层NAND开始量产出货了。

业内人士预测,三星电子将加快200层以上NAND闪存量产的步伐,以夺回技术领先地位。但是这个预测却并不令人乐观,原因很简单,大家都在抢跑,就看谁的研发创新的体力更好罢了。

其实,在NAND领域的竞争,不仅三星电子与美光科技看重,同时,包括三星、美光、Intel、SK海力士、东芝、西部数据(SanDisk)等在内的所有全球闪存颗粒顶级厂商都看重3D NAND产品创新。

比如SK Hynx的4D NAND采用了电荷捕获型(Charge Trap Flash,CTF)的闪存技术,首创电荷捕获型CTF技术与Peri Under Cell(PUC)技术结合,不过,SK Hynix宣称的4D NAND Flash,本质上仍是3D NAND Flash,命名4D只是强化商业营销的一种手段。

CTF技术可减少记忆单元(cell)间的干扰,解决2D NAND使用浮栅(Floating Gate,FG)技术遭遇的限制。PUC本是Peri排线技术,可以缩小产品本身的体积,自然就实现了节省生产成本的目的。所以4D NAND Flash的宣称也是事出有因的。

当然对于SK Hynix来说,已经使用了电荷捕获型(CTF)技术设计好几年了,所以它不是新的技术采用,之前Micron和Intel是主要是两个使用浮栅FG技术的NAND闪存制造商。此外,Intel独创的傲腾技术路线,也已经赢得了全球市场,这里不得不让众多闪存友商所艳羡。

需要指出的目前美光将使用自己的栅极替换工艺Replacement-gate技术,业内专家指出,这也是Charge Trap Flash(CTF)技术设计。与此同时,更有意思的是,三星的Gate-last工艺也包含了栅极替换工艺Replacement-gate的技术。

从3D NAND技术架构来看,现在3D NAND常见的分为VC垂直通道、VG垂直栅极两种架构。架构不同,对于3D NAND的可靠性设计略有一点区别,但闪存的本质是没有区别的。因为毕竟是采用堆栈来扩大单位面积上的闪存容量大小的,目前业界知名的闪存厂商采用了NAND堆栈层数越多,对于闪存可靠性要求的挑战越高。

不过,2022将成为NAND Flash疯狂抢跑之年,三星、美光、Intel、SK海力士、东芝、西部数据谁将成王者?我们拭目以待。

文章来源: 阿明观察,半导体行业观察

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...