硬件也有黑客的发挥之处,杜绝硬件木马的技术有哪些?

IT猿人 2022-04-25

黑客木马设计信息安全

2589 字丨阅读本文需 7 分钟

黑客攻击是当下最严重的安全问题之一,随着近期攻击活动的频繁,国际上不少能源公司都深受其害,被窃取勒索机密信息。然而,同样的攻击也在威胁着人们看不到的领域,比如最近专门针对工控系统的恶意软件PIPEDREAM,就是通过PLC编程软件CODESYS的漏洞进行攻击的。

不过这类攻击主要是还是从软件层面上攻破PLC等硬件,那有没有直接在硬件层面上为黑客创造可乘之机的方法呢?自然也有,也就是我们常说的硬件木马。这类硬件木马更像是一种后门攻击,靠的就是对集成电路进行恶意篡改。

那么,具体来说,硬件木马如何下黑手?杜绝硬件木马的技术有哪些?

硬件木马如何下黑手

集成电路已经成为了诸多实际应用中不可或缺的组件,从智能家居、工业设备到机器学习加速器。然而随着IC的设计与生产愈发复杂,一个芯片可能包含数百亿晶体管,先进工艺所需的生产条件也不是Fabless厂商能够轻易负担的。很多时候这些工作是外包给第三方完成的,这样的流程结构造成了一些硬件安全隐患,只要流程中任意一名参与者图谋不轨,就有可能利用硬件木马触发敏感信息泄露、性能下降和IP窃取。

这类硬件木马通常分为两个部分,一个是触发器,另一个就是内部的载荷了。触发器决定硬件木马什么时候激活,载荷则负责关键的攻击工作,比如窃取隐私信息或产生错误的输出等。

就以常见的边信道攻击(SCA)为例,这种攻击可以利用IC的固有物理属性,比如时序、功耗等,获取本放在IC内部的信息,但这种攻击往往需要获取大量的数据和处理,如今不少安全性强的芯片通过阻绝这一过程,让自己免受SCA的破坏。然而在硬件木马的辅助下,可以省去处理的过程,极大减少攻击的时间。

验证硬件木马的样片 / 塔林理工大学

那么攻击者是在哪个阶段插入这些硬件木马的呢?塔林理工大学的研究人员为了验证硬件木马的可行性,打造了一个基于65nm CMOS工艺的ASIC芯片,通过ECO在其中的4个加密核(两个AES、两个PRESENT)中引入了硬件木马,“下黑手”的时间只花了不到两个小时。

芯片设计、攻击和制造的流程 / 塔林理工大学

从上图可以看出,在GDSII版图送给代工厂的途中,攻击者对其进行了篡改,改变或增加额外的逻辑,最后代工厂制造出了内含木马的芯片,并利用基于功率的边信道攻击获取了加密信息。若是芯片本身功耗就在mW级左右,终端用户基本很难察觉到来自芯片的异常。

原始和被篡改后的布局 / 塔林理工大学

ECO必须要四个先决输入,工艺库、单元库、门级网表和时序约束,对于能在代工厂内对版图动手的攻击者来说,前两项已经到手了,门级网表可以通过EDA工具从布局中提取,而时序约束只能靠一定程度的估计了。

世界上最厉害的病毒:硬件木马A2

要说这世界上最厉害的病毒,非密歇根大学所研究出来的A2芯片后门了。这个后门既不存在于应用程序中,也不存在操作系统里,而是存在于芯片的晶圆中。

首先在芯片制造阶段,就为芯片增加一个单独、已经设置了陷阱的逻辑门电路,这样一来,任何基于物理的分析方法,比如进行功耗分析等等,都无法发现这个后门。如果你试图这么做,无疑是大海捞针。

这个门电路会带有一个能够存储少量电荷的电容。

芯片使用过程中,一旦电容中积累的电荷达到预设值,触发门电路功能发生翻转开启,临时提升系统权限,这时恶意程序可以执行恶意代码等操作,随后电容器放电,立马恢复为普通权限,这个过程极难被发觉。

硬件木马A2的强大之处在于以下几点:

极难被发现

逻辑门是一个电子的开关而现在的微处理器包含数以百万级的逻辑门,想要发现一个异常的门电路,几乎不可能。

无法被检测

因为只有在一系列特殊事件被触发后,电容值才能达到门限,触发“机关”。平时电容电压都近零状态,现有的测试技术无法发现。

可靠性很高

研究在-25-100摄氏度的环境中,对触发机制进行测试,都取得了成功。

杜绝硬件木马的成熟技术

至于杜绝硬件木马的话,目前主要方式有两种,一种是边信道分析,一种是逻辑测试。像以上的边信道攻击方式,因为会改变时序等参数,所以边信道分析可以检测出这类无功能性的硬件木马,但对于小的硬件木马存在一定的误报率。而逻辑测试的难点在于用少量的测试模式,增加对触发器的覆盖。

美国圣地亚哥大学的几位研究人员提出了一种更好的检测方式,名为AdaTest。该检测方式通过加强学习产生了一组多样的测试输入,通过迭代的方式逐步产生高回报值的测试矢量。此外,AdaTest会着重关注为硬件木马检测提供更多信息的测试样本,从而减少样本数量提高样本质量。

AdaTest的流程图 / 圣地亚哥大学

为了减小硬件开销,AdaTest能在可编程硬件上部署电路仿真,从而加速测试输入的回报值评估;其次,通过自动构建辅助电路进行测试输入生成、回报值评估和自适应采样,AdaTest中的每个计算阶段都被流水线化。与传统的逻辑测试相比,AdaTest的测试生成速度提高了两个数量级,与此同时测试样本大小减小了两个数量级,却因此实现了同样或者更高的硬件木马检测率。

杜绝硬件木马的新兴技术

2021年,德国慕尼黑工业大学的科学家设计并制造了一种可有效应用后量子密码的计算机芯片,并且通过人工智能程序来重构芯片功能,以测试芯片内植木马的可验证性。

量子计算技术的出现将危及当前许多密码算法,尤其是广泛用于保护数字信息的公钥密码算法。为此,世界各地的安全专家正忙于制定“后量子密码学”的技术标准,分析从公钥密码基础设施向后量子密码迁移的诸多挑战。其中之一是后量子加密方法的高计算要求。现在,由慕尼黑工业大学信息安全教授乔治·西格尔领导的团队设计并制造了一种可以有效地应用后量子密码的芯片。

该芯片是所谓的专用集成电路,通常这类芯片是根据用户要求和特定电子系统的需求设计和制造的。西格尔的团队基于开源RISC-V标准修改了开源芯片设计,并应用了硬件和软件协同设计的方法,通过修改计算内核和加速必要计算操作的特殊指令,以及扩展设计了一个专门的硬件加速器,使得新的芯片可以实现较好的后量子加密性能。

新的芯片不仅能够使用最有前途的后量子密码候选算法Kyber,也可以与另一种需要更多计算能力的替代算法SIKE配合使用。与完全基于软件解决方案的芯片相比,该芯片使用Kyber加密的速度大约能提高10倍,消耗的能量减少大约8倍。而使用SIKE加密的速度,将比只使用软件解决方案的芯片快21倍。由于SIKE被视为一种很有前途的替代方案。在长时间使用芯片的地方,这样的预防措施是有意义的。

研究人员认为,对于后量子密码学而言,所谓的硬件木马带来的威胁也在增加。如果攻击者在芯片制造之前或制造期间成功地将木马电路植入到芯片设计中,这可能会产生严重的后果。西格尔解释说:“到目前为止,我们对真正的攻击者如何使用硬件木马知之甚少。为了制定保护措施,我们将自己置于攻击者的角度,自己开发和隐藏木马。这就是为什么我们构建了4个木马程序,然后将它们植入到我们的后量子芯片中,它们的工作方式非常不同。”

小结

由上可知,与预防硬件木马一样,植入硬件木马同样不是一件易事,所以代工厂出现这类硬件木马出现的概率比较小,但不代表不存在这样的安全威胁,毕竟人为设计失误都出现了,人为篡改也不是不可能的,设计者对这样的疏忽也不可不防。

来源:电子发烧友观察,科技日报,蔚可云

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:IT猿人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...