中科院研发智能纳米机器人,展示了在生物传感、成像和药物递送中的应用潜能

机器人生态圈 2022-06-15

纳米机器人机器人科普

1513 字丨阅读本文需 5 分钟

从中科院合肥物质科学研究院获悉,该院健康所杨良保研究员团队创新性地提出一种可非线性云集“围攻”生物靶标的智能DNA分子纳米机器人模型。该成果近日发表在纳米材料领域顶级期刊 Nanoscale Horizons上。

近年来,DNA纳米技术得到迅猛发展,基于DNA分子的可编程性,合理设计DNA分子自组装模块,以此作为纳米尺度的“乐高积木”,可以组装成各种静态DNA纳米结构和动态DNA纳米设备,应用于分析化学、医学诊断和疾病治疗等多个领域。

1、“围攻”生物靶标

“在试管液体环境下,智能DNA分子纳米机器人会自动识别目标生物分子,然后迅速集结‘围攻’,实现对目标生物分子的捕获和信号放大,有助于研究人员对其快速追踪。”安徽大学教师、论文第一作者李绍飞说,就像一只蜜蜂“盯”上了目标物,然后“召唤”其他蜜蜂不断进行“围攻”,形成容易被发现的聚集群。

李绍飞介绍,智能DNA分子纳米机器人模型以短的单链DNA为骨架,长度通常为100个左右的核苷酸,通过自身折叠形成纳米尺度的结构设备,其形状类似于一个发夹。

智能DNA分子纳米机器人模型由多功能机械臂和备选附件(药物、信号标签、靶标钳夹等)、靶标验证器、智能云集路径控制器和自组装马达等部件组成。

每个部件都有各自的“使命”。例如,多功能机械臂可以从混合物中抓取目标分子,然后由靶标验证器检验抓取目标的正确性。在抓取和识别到正确的目标分子后,机器人开始在路径控制器的引导下,按照非线性的路径方式云集,并依赖自组装马达驱动机器人完成云集组装,最终形成大的组装体。

当这些部件完成各自“使命”时,目标分子充分“暴露”,只能乖乖“束手就擒”。

相比目前常用的PCR(聚合酶链式反应)检测技术,李绍飞认为,智能DNA分子纳米机器人集结“围攻”靶标的信号放大策略,具有无酶、常温和操作简单等独特优势,有利于在即时检验或临床检验中的应用。

2、创新设计原理抗“渗漏”

DNA是由4种核苷酸为基本单位连接而成的生物分子,特定的核苷酸之间可以相互配对结合。依赖这种自身作用力,合理设计和人工合成DNA分子,可以在体外自组装成各种DNA纳米机械设备。

DNA纳米机械设备常用的一个原理是以杂交链式反应为代表的三分支链置换反应。“这种传统的杂交链式反应通常至少包含两种简短的DNA组分元件,它们是专门针对目标生物分子设计的。当目标生物分子存在时,两种简短的DNA组分元件相互交替结合,以线性的单一方式不断延长,起到对目标分子识别和线性信号放大的作用。”李绍飞说。

由于非线性信号放大相比线性信号放大,更有利于提高分析检测的灵敏性,所以科学家试图基于杂交链式反应,提出一种发展非线性信号放大的策略。

然而,这一策略的进展遇到瓶颈——“系统渗漏”。

“系统渗漏是指在无目标生物分子参与下,短的DNA组分元件之间‘私自’相互结合为长的DNA,形成假的信号放大,严重影响分析检测的特异性和灵敏性。”李绍飞告诉《中国科学报》。

简单来说,“系统渗漏”可能会导致检测结果成“假阳性”。

在前期研究中,李绍飞等揭示了渗漏发生的机理,提出了抗渗漏的措施。

此次研究中,他进一步对渗漏和抗渗漏机制提出新见解,创新性地采用了四分支链置换反应原理,建立了可非线性云集“围攻”生物靶标分子的智能DNA分子纳米机器人模型,实现对目标生物分子的非线性信号放大。

最后

该项研究创新了DNA分子非线性自主装设计原理,突破了DNA分子非线性自组装普遍存在的背景渗漏难题,并通过编码新颖的嵌入式分子组装渗漏控制程序,建立了两个基于超发夹纳米结构的智能 DNA分子纳米机器人模型,为构建先进信号放大器和智能靶向药物递送载体提供了新的设计蓝图。

两个模型由多功能机械臂和备选附件(药物、信号标签、靶标钳夹等)、靶标验证器、智能云集路径控制器和自组装马达等部件组成,只有在特定生物靶标出现时,机器人才会获得响应,然后以生物靶标为“围攻”对象,通过各部件协同运行,完成机器人之间的非线性云集组装,形成大的集合体,实现对特定生物靶标信号的非线性级联放大或附件装载物的富集。

研究中,科研人员分别将肿瘤细胞小分子和外泌体等作为生物靶标,通过整合无标记表面增强拉曼光谱(SERS)信号读出技术和荧光分子信号标签,检验了设计模型的应用性能,提示了智能DNA分子纳米机器人在生物传感、生物成像和药物递送中的应用潜能。

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:机器人生态圈
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...