中心复合设计法(二阶响应曲面设计)优化大面积燃料电池气动端板设计:接触应力分布仿真值和实测值的差异[设计因素其十四]

电化学能源科学与技术 2022-06-23

news

849 字丨阅读本文需 11 分钟

中心复合设计法(二阶响应曲面设计)优化大面积燃料电池气动端板设计:接触应力分布仿真值和实测值的差异[设计因素其十四]

Investigation of contact pressuredistribution on gas diffusion layer of fuel cell with pneumatic endplate

M.M.Barzegari

M.Ghadimi

M.Momenifar

Abstract

Polymer electrolyte membrane fuel cell is apromising energy conversion device because of its high energy density, highefficiency and low emissions. Contact pressure on gas diffusion layers plays animportant role in the performance improvement of polymer electrolyte membranefuel cells by optimizing the ohmic and concentration losses. In this paper, geometric parameters of a pneumaticclamping system are optimized using a central composite design method andfinite element simulations to obtain the most uniform contact pressuredistribution on gas diffusion layers. The experimental data obtained by thepressure mapping system have been employed to validate the results of theoptimized clamping system. The embedded pressure measurement films are placedin the designed polymer electrolyte membrane fuel cell with an active area of400 cm2. The results reveal that themaximum difference between numerical and experimental results is less than 8%.Moreover, the contact pressuredistributions over the gas diffusion layer for the clamping systems ofpneumatic and conventional endplates are compared. The results demonstratethat the weight and efficiency ofthe clamping system with optimized pneumatic endplate is significantly betterthan the clamping system with conventional endplates.

Pneumatic:气动的

Fig. 1. Schematic diagram of the PEM fuel  cell with pneumatic clamping system.

Fig. 2. Finite element model of the PEMFC  stack with pneumatic clamping system.

Table 1 Mechanical and geometric  parameters of the PEM fuel cell components.

Table 2 Values of different levels of each  factor used in circumscribed CCD.

中心复合设计

The optimization  process is accomplished using central composite design (CCD) method. CCD is  an ideal solution for fitting a second-order response surface method (RSM)  which is a statistical technique that can be used for studying the effect of  several factors at different levels.

属于二阶响应曲面设计

Table 3 Design layout and FE simulation  results of CCD.

Table 4 Analysis of variance of Eq. (1).

Table 5 Conditions for additional FE  simulations.

Fig. 3. 9-cells stack and pressure  mapping system for contact pressure measurement of gas diffusion layer.

Fig. 4. (a) Comparison of predicted  response variable by Eq. (1) and FE Simulation for five conditions, (b)  Relative errors of respective trials.

Table 5 The coded and uncoded optimized  values of the factors.

Fig. 5. Contact pressure distribution on  GDL of PEMFC stack with different geometric parameters of pneumatic clamping systems  along (a) X-axis, (b) Y-axis, (c) D-axis.

Fig. 6. Comparison of contact pressure  distribution on GDL for conventional and pneumatic clamping systems.

Fig. 7. Results of contact pressure  distribution over the active area for optimized clamping system, (a) CPRESS  distribution using pressure measurement film, (b) comparison of simulation and  experimental results along Y-axis, (c) difference between FE simulation and  experimental results.

Conclusion

In this work, geometric parameters of the  pneumatic clamping system are optimized to obtain the most uniform contact  pressure dis-tribution over gas diffusion layers. The optimization of a  pneumatic clamping system is carried out using a three-dimensional finite  element method. The design of simulation for optimization of the clamping system  is conducted using the statistical technique based on central composite  design method. The thickness of the  pneumatic endplate, the thickness of conventional endplate and the side  length of pneumatic endplate are the three factors used for the design of  simulation. The standard deviation  of contact pressure values for all nodes on the gas diffusion layer surface is considered as a response variable.  Five more randomly levels of  factors are selected to verify the model obtained by the response surface method. The results are compared with finite element simulation and the relative  errors are less than 4.5%. The considered  experimental setup is composed of 9-cells polymer electro-lyte membrane fuel cell stack with an  active area of 400 cm 2 . The re-sults  showed that the use of optimized pneumatic endplate leads to a significant improvement in the  uniformity of contact pressure dis-tribution on the gas diffusion layer. The finite element simulation is validated through experimental data  obtained by the pressure mapping system  and the maximum difference is less than 8%. In addition, the contact pressure distributions over  the gas diffusion layer for the clamping  systems of pneumatic and conventional endplates are com-pared. The results reveal that the weight  and efficiency of the clamping system  with optimized pneumatic endplate is significantly better than the clamping system with  conventional endplates.

猜你喜欢:

燃料电池设计因素

燃料电池电解质膜的应力状态与设计因素:边框边界位置、密封件高度、边框和密封材料(设计因素其一)

燃料电池电堆活性区接触应力分布的影响因素:端板厚度、端板材料、密封模型、密封件硬度、电池节数、电池位置(设计因素其二)

燃料电池电堆内部应力分布的模拟和压敏纸测量:介电材料和边框材料的应用、膜干湿对应力的影响[设计因素其三]

纤维基材料受压下三维微结构模拟:气体扩散层在脊部和流道内部的变化[设计因素其四]

燃料电池双极板流道参数的设计:以田口方法和es-pemfc联合优化直流道为例[设计因素其五]

燃料电池气体扩散层弯曲刚度各向异性对性能的影响:弯曲刚度、性能、HFR、流阻、厚度的差异分析[设计因素其六]

燃料电池气体扩散层的可压缩性:基材中PTFE含量、MPL中PTFE及含量、气

体扩散层和密封复合、试验机刚度的影响[设计因素其六]

这篇文章的标题应该是设计因素其七,标题无法更改,只能这样了。

同时测量压缩压强、压缩位移、欧姆电阻评估气体扩散层的电阻、厚度、稳态和局部破坏[材料对标其四,设计因素其八]
金属双极板燃料电池的装配扭矩对气体扩散层局部受压破坏、气密性和电化学性能的影响[设计因素其九]

四参数(流道脊部宽度、拔模角、圆角、压缩压强)模型评估计算金属双极板流道和气体扩散层受压下的变形和流阻增加现象[设计因素其十]

气体扩散层和无流道双极板材料接触电阻的测量和自相似结构函数法预测[设计因素其十一]

燃料电池端板设计和生产验证实践:由接触电阻判和传质阻抗确定端板变形量、厚度优化[设计因素其十二]

燃料电池膜电极边框位置应力分析:气体扩散层-边框间隙配合和氢空压差

分配区点状结构对大面积燃料电池电流密度分布均一性、温度分布的影响

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:电化学能源科学与技术
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...