陶瓷增材制造技术热度日渐攀升,它的科学价值何在?

材料新科技 2022-08-08

陶瓷增材制造选择性激光烧结

5260 字丨阅读本文需 14 分钟

中国可谓是陶瓷的“故乡”,其历史最早可追溯至商代(公元前16世纪)。到唐代时(公元960-1279年),各色各样的陶器瓷器件被输送至国外,享誉世界。明朝的青花瓷更是将陶瓷技术和艺术水平推上了巅峰。到了现代,陶瓷又发生了什么样的翻天覆地的变化,它到底能给社会和人类带来什么呢?

相比传统陶瓷制备工艺,像热压成型、浇铸成型、凝胶注模成型等工艺,增材制造技术具有更为智能、精密、综合制造能力。它能够完成传统工艺不可能完成的制造,例如复杂多孔的细胞体陶瓷,多角度弧面的块体陶瓷,孔隙率可调控的结构陶瓷,多材料、多结构的结构-功能陶瓷等。

01

什么是陶瓷增材制造技术?

现代意义上的增材制造(Additive Manufacturing,又称为3D打印)及其前身快速成型(Rapid Prototyping)起源于20世纪80年代后期,其快速的发展势头与不断被发掘的应用优势使其成为近十年科学、工业、经济和社会等诸多领域内热议的话题之一。

增材制造作为新兴的制造技术,应用领域不断扩展,成为先进制造领域发展最快的技术方向之一;增材制造产业的发展为现代制造业的培育壮大以及传统制造业的转型升级提供了宝贵契机。

当前,以增材制造(亦称 3D 打印)为代表的新制造技术,其基础研究、关键技术、产业孵化等都在快速发展。增材制造技术完全改变了产品的设计制造过程,被视为诸多领域科技创新的“加速 器”、支撑制造业创新发展的关键基础技术;进一步改变了产品的生产模式,驱动定制化、个性化、分布式制造;通过云制造并与大数据技术结合,加快传统制造升级,实现制造的个性化、智能化、社会化;对制造业起到巨大的推动和颠覆性变革作用,助推航空、航天、能源、国防、汽车、生物医疗等领域核心制造技术的突破和跨越式发展。

增材制造的快速发展离不开适用材料体系的拓展与成品部件性能的优化:

高分子材料是最早开发和应用的材料体系,其适用的增材制造技术种类最为丰富,应用领域也覆盖工业级与消费级市场;金属材料的增材制造起步较晚但成果丰硕,应用较多的各类金属与合金目前均可通过激光或电子束熔化方法实现部件制造,且已在航天航空、人体硬组织修复等领域开展了相关应用;相比之下,陶瓷材料的增材制造虽然几乎于同期起步,但直到近些年才以商业化光固化增材制造设备的推出为标志实现了初步的实用化。

这一里程碑式的突破迅速促使陶瓷增材制造成为世界范围内陶瓷学术研究与工业应用探索的热点之一。业界对陶瓷增材制造相较于陶瓷传统成型方式在无需模具、可成型复杂部件等方面的优势抱有期待,经济学界也对陶瓷增材制造领域的产业前景做出了乐观估计,相关产业产值预期将从2017年的不足1亿美元迅速增长到2028年的36亿美元。

陶瓷增材制造技术是一种基于激光的数字光固化成型技术。紫光或是紫外激光照射到光敏陶瓷浆料(光敏树脂、陶瓷粉末和其他添加剂混合而成),会在其局部或是表面的位置产生固化反应,其特征尺寸能够达到纳米和微米级。陶瓷浆料之所以会固化,全都是依赖于光敏树脂的活性自由基。在激光的照射下,短分子链的光敏树脂会形成长分子链,环绕陶瓷粉末形成网状物,将陶瓷粉末牢牢地包裹住。因而,陶瓷增材制造技术又称之为“分子可编辑技术”。我们都知道一粒一粒的沙子堆积,就能堆积出不同形状的沙堆。同样的原理,一层一层的光固化效应叠加就能够产生不同形状的物体,此时,我们管这个物体叫做陶瓷生胚(Green Body)。

说到陶瓷生胚,难免不会想到传统手艺人捏的陶瓷泥(黏土)。现代陶瓷生胚的塑形技术不再是手工艺、铸塑、热压成型,而是用数字化和机械自动化技术开发出各种复杂、多功能的结构。目前,陶瓷增材制造技术主要是以立体光刻工艺(Stereo-lithography SLA)、数字光处理技术(Digital Light Processing DLP)和选择性激光烧结(Selective Laser Sintering SLS)为主流,以双光子聚合技术(TPP),直写成型技术(DIW)和其他增材制造技术为辅流。部分原理简化图如下:

图3 部分陶瓷增材制造工艺示意图

立体光刻工艺(SLA),其技术原理是采用特定的波长光束,对陶瓷浆料表面进行点-线-面的光固化扫描,形成零件横截面图案;固化完成后,在其原有的固化层上铺一层新的浆料,再次固化;往复循环,直至打印出完整的零件。此工艺具有很高的成型精度。数字光处理技术(DLP),其原理与SLA相似,但它是面-面曝光的固化模式,具有很高的打印效率。选择性激光烧结技术(SLS)则是用陶瓷粉末/混合粉末代替了陶瓷浆料,其工艺原理主要是利用激光能量对单层的陶瓷粉末/混合粉末进行熔覆/粘接成型,层层叠加,直至零件成型。相比前面两者工艺,SLS通常具有较差的表面质量。如下图所示,是为四种工艺制备的SiC陶瓷。

图4 SLS/DIW/SLA/DLP工艺制备的复杂结构陶瓷

02

陶瓷增材制造的基本种类有哪些?

我们熟知的黏土主要是由多种水合硅酸盐和一定量的氧化铝、碱金属氧化物和碱土金属氧化物组成,并含有石英、长石、云母及硫酸盐、硫化物、碳酸盐等杂质。上述所提到的石英、长石、云母以及莫来石,伊利石等都属于陶瓷材料的范畴。除此之外,陶瓷的种类大致可以分为以下四个种类:氧化物陶瓷系列,像Al₂O₃、ZrO2、SiO₂、TiO₂、BeO等;碳化物陶瓷系列,像SiC、B4C等;氮化物系列,像Si₃N₄、BN、AlN等;和其他混合陶瓷系列,像ATZ、ZTA、SiCN、SiOC、Cf/SiC、 ZrOC等。现在的研究主要集中在Al₂O₃、ZrO2、SiO₂、TiO₂、SiC、Si₃N₄等陶瓷材料。氧化物陶瓷通常呈现白色,而碳化物陶瓷呈现黑色,如下图所示。

图5 不同元素的陶瓷增材制造

03

陶瓷增材制造的工艺有哪些?

陶瓷增材制造工艺与传统手工艺的区别主要是在其成型方式,但都要经历生胚烧结成瓷,温度大约在1000-1650℃。陶瓷增材制造技术主要可以分为三大步,制备光敏性陶瓷浆料,数字光固化成型和热解后处理。每一大步里面都包含若干个小步和科研要点。它比传统的陶瓷制备工艺更严格、更精细。

立体光固化成型(SLA)

立体光固化成型法(SLA)是1977年Swainson提出的一种制造概念,随后Kodama真正实现了这一工艺。

SLA工艺的原材料主要是液态树脂与陶瓷粉末混合后的陶瓷树脂,由SLA工艺制备的陶瓷样品与传统工艺相比,不仅延续了陶瓷制体力学性能好的特点,同时还保证了制品的表面质量以及尺寸精度。

然而,使用SLA技术打印陶瓷制体也存在着许多的制约。利用SLA技术制备陶瓷制体时,不同的浆料需要对应不同波长的紫外光,这就对制造环境提出了更高要求,同时提高了制造成本;另外SLA技术使用的陶瓷树脂黏度应小于3Pa·s,以保证浆料具有一定流动性,这就使得大多数陶瓷树脂的固体体积百分比低于40%,导致这些陶瓷树脂的样品在经历脱脂烧结后,大多会出现剧烈的收缩与变形,严重时甚至会导致整个陶瓷体的崩溃。目前解决这一问题的主要方法是改变陶瓷树脂中的材料。

熔融沉积成型(FDM)

熔融沉积成型(FDM)工艺于1988年美国学者Dr.Scott Crump首次提出,因其容易实现、打印速度快和较低的成本,被广泛运用于有机高分子材料的3D增材制造。通常运用于FDM技术的主要是热塑性的高分子材料,这些高聚物被制作成线状原料,这些线材通过FDM打印机的喷嘴加热熔融,并被挤出喷嘴,伴随着喷头的运动,在基底面上层层沉积形成设计好的形状,最终制成需要的零件。

随着材料技术的发展,越来越多的生物兼容性好、熔融温度低且力学性能优良的高聚物材料的涌出使FDM技术与陶瓷体制备出现契机,这项研究的成果主要运用在生物医学方面。研究者们通过结合PLA、ABS与羟基磷灰石,采用FDM技术制备人造骨,并将其植入患者体内,通过植入物刺激骨骼的生长,这项技术帮助骨植入领域走出了天然人骨短缺和异种骨骼排斥的困境。

相较于其他的增材制造方式,FDM技术在人体陶瓷骨骼制备方面具有成本低和无需支撑材料的优点;同时研究表明人骨的抗压强度在4~12MPa,通过调整这些人造骨的孔隙率,在经过脱脂工艺后,其抗压强度可达16MPa,同时收缩率在8%左右,这就极大的保证了实际样品与设计模型几何形状的相似性。但FDM技术制备的陶瓷初体依然需要经历脱脂烧结,这就带来了开裂和变形的问题。目前解决这些问题的途径主要通过修改3D模型的设计和陶瓷生坯烧结方式的改进上。

选择性激光烧结/熔融(SLS/SLM)

选择性激光烧结(SLS)技术由Carl Ckard于1989年首次提出,其工作原理如图所示。辊筒将储粉仓中的粉末平整的铺在粉床中,激光通过扫描系统有选择性地烧结粉末,随后成型活塞下降,辊筒重新铺设粉末,通过层层堆积形成所需零件。

SLS技术运用于陶瓷体制备时分为含有添加剂和不含添加剂2种。含添加剂的粉末在激光加热时,添加剂熔融并粘结陶瓷颗粒形成整体,从而获得生坯件;不含添加剂的固体粉末一般由2种陶瓷粉末混合而成,激光加热时,低熔点的粉末受热熔化,粘结高熔点的陶瓷颗粒。与含有添加剂粉末的制造方式相比,此时低熔点粉末充当了添加剂熔融粘结高熔点陶瓷颗粒的角色,这样操作的优点是省去了脱脂步骤。区别于SLS技术,选择性激光熔融(SLM)虽然保留了激光加热的特性,但该技术不需要添加粘结剂,而是通过加热使全部粉体熔融并相互粘黏,随后层层累积获得陶瓷体。

SLS/SLM技术具有应用材料多、损耗率低和工艺简单等特点,相较于其他增材制造方式,其成型速度快,可重复性高。但该工艺方式主要存在2个严重限制其在工业上推广的问题:①在SLS技术中,添加剂的去除留下了孔隙,降低了成型件的力学性能;②成型精度低,表面粗糙度高。

墨水直写(DIW)

墨水直写技术源于1998年美国Sandia国家实验室J.Cesarano等提出的自动注浆成型技术,起初主要针对陶瓷等材料的三维模型成型制造,经过后期不断地研究拓展,逐渐发展为今天的DIW增材制造技术。

高黏度的液体或固液混合浆料作为墨水材料存储于料筒中并和喷头相连,安装于能够在计算机控制下完成三维运动的三轴CNC平台,通过机械压力或气动压力推动墨水材料从喷头连续挤出并在基底上预成型,后依据材料特性进行相应的后处理(挥发溶剂、热固化、光固化、烧结、浸泡等)后得到最终的三维成型构件。

DIW增材制造技术具有设备要求低、制造成本低、原材料适用范围广、成型精度高、制造灵活等优势;缺点在于DIW制备的陶瓷精度较差、缺陷较多,且直写之后一般需要固化、烧结等后续处理过程。最终成型构件的精度不仅取决于墨水材料的配方、组分理化特性、体系黏度和流变性能,而且受到直写参数(喷头直径、压力大小、平台移动速度等)的影响。

数字光处理技术(DLP)

数字光处理技术(DLP)于1977年由Larry Hornback率先提出,时隔19年,由Texas Instruments将其商业化。DLP技术的原理和SLA技术基本相似。DLP与SLA技术的具体区别在于DLP技术采用宽波段的投影光将所需样品的截面图像放映在光敏浆料表面,逐层累积获得样品。DLP核心组件是DLP芯片,即数字显微镜设备,该组件直接决定了样品的几何形貌及打印精度。

DLP技术打印样品具有精度高、时间短的优点,在陶瓷体打印方面的应用主要集中在小型及复杂结构产品上。DLP技术运用于陶瓷制备时,由于其光强度较低,光引发剂与自由基交联聚合反应较差,导致固化不彻底,通常以在浆料中加入粘结剂的方式解决这一问题。添加粘结剂的陶瓷浆料进行DLP 3D打印,初始的光固化过程使得样品具有一定的保形能力,随后置于烘箱中进行加热,发挥粘结剂的粘结作用,使生坯几何形状固定,再进行脱脂烧结步骤。但众多的研究表明,烧结后的样品依然存在开裂、变形和收缩的问题。因此和SLA技术一样,提高打印陶瓷浆料的固含量和合适的脱脂烧结方式依然是DLP技术的研究热点。

04

陶瓷增材制造的科学价值何在?

陶瓷材料的化学键大都为离子和共价键,键合牢固并具有明显的方向性,与金属相比,具有更高的硬度、弹性模量、耐高温性、耐腐蚀性和耐磨性,但是其塑性和韧性不如金属。因为有如此好的性能,它广泛地被应用于航天航空、军事、电子科技、生物医疗、化学器皿、能源等诸多工程领域。其中,生物陶瓷被广泛的应用于骨组织和牙冠的修复。磷灰石陶瓷作为与人体骨头成分极为相近的物质,具有非常好的生物兼容性,除此之外,氧化铝和氧化锆逐渐被开发成陶瓷牙冠,因为它们有足够的强度和生物兼容性。

在航空航天方面,航空发动机的陶瓷型芯(SiO₂、Al₂O₃、ZrSiO₄)已然兴起,用于制备发动机叶片。在电子科技方面,陶瓷具有很好的微波吸收性能和介电性能,能用来做绝缘和吸波材料;特别是应用在能源领域的核电站,因为其具有很好的抗辐射性能。

在化学器皿方面,陶瓷具有非常稳定的化学性能,同时又具备高的耐高温性和耐腐蚀性,因而广泛的被应用在催化剂载体、高温杂质过滤等场合。部分应用陶瓷图片如下图所示。

图8 结构与功能陶瓷的应用

图9 不同点阵结构在结构功能陶瓷方面的应用

面对诸多的应用场合,各种复杂形状的结构陶瓷、功能陶瓷和结构-功能陶瓷的需求越来越大,特别是各种镂空陶瓷、孔隙调控陶瓷、可控可定制的复杂结构陶瓷,传统的陶瓷制备技术已经远不能满足需求。陶瓷增材制造创造了一个制造业的奇迹。它能够自主设计各种复杂结构零件,能够打印出高质量和高精度的生胚,满足各领域的需求。陶瓷缺乏韧性和塑性形变。这也导致陶瓷在一些领域应用困难。尽管如此,陶瓷的科学价值依然存在,增材制造技术更是有广阔的前景,可谓是科研意义巨大。

中国科学院沈阳自动化研究所首次在陶瓷增材制造技术新领域取得重要研究成果,提出了一种光固化数学模型,用于分析研究立体光刻(SLA)零件的成型质量;发现前驱体陶瓷浆料在增材制造过程中存在固化缺陷,并提出了改善方法。目前,研究所拥有了国内先进的前驱体陶瓷和浆料陶瓷增材制造能力,具备高精度成型的立体光刻工艺(Stereo-lithography)、材料热重分析仪器、温控精准的1700度高温电炉和真空脱脂炉等设备,能够形成一条基于数字光固化成型的陶瓷产品制备的工艺链,能够自主研发和设计不同复杂形状的陶瓷零件,完全摆脱了传统陶瓷制备的束缚,引领了陶瓷增材制造技术的发展与进步。

结语与展望

与传统陶瓷制备方式相比,增材制造技术可以实现更多复杂几何结构的陶瓷体制备,满足了陶瓷材料在各个领域中应用的发展需求。陶瓷增材制造的科学研究与应用开发仍将在相当长一段时间保持高热度,同时随着技术问题的逐步解决,增材制造的陶瓷部件的综合性能还将进一步提升,首先逐步达到与传统方法制造部件相近的制造水平,而后将进一步通过更为精细化个性化的结构调控实现具备个性化功能性陶瓷部件的制造。

同时我们也该看到,增材制造技术制备的陶瓷体依然存在众多的不足之处,在陶瓷制造中广泛运用增材制造技术仍然存在很多障碍。例如生产时间长,力学性能低于传统方式制造的陶瓷,后处理出现开裂收缩等;另外较大尺寸(例如几米)的陶瓷件仍然很难用增材制造技术制备。

综上所述,未来增材制造技术在陶瓷体制备领域的研究应主要集中在浆料研制和后处理方面,同时还需改进成型技术,以实现较短时间内完成接近设计模型的陶瓷体制备。

本文来源:3D打印技术参考,中国粉体网,中科院之声

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:材料新科技
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...