充得了电,处理得了垃圾,氮化镓与电子、环保左右“逢源”

微观人 2022-08-29
4808 字丨阅读本文需 12 分钟

近年来,在材料生长、器件制备等技术的不断突破下,第三代半导体的性价比优势逐渐显现。其中,氮化镓从2018年开始,凭借着在消费类快充电源领域的如鱼得水,其发展也逐渐驶入了快车道,业界甚至将7月31日定为世界氮化镓日。

本篇文章就来探讨下,随着氮化镓市场的持续火热,其未来会呈现出怎样的光景?厂商们又为之做出了怎样的布局?

从手机走向汽车,市场更广

氮化镓作为一种宽带隙复合半导体材料,具备禁带宽度大、击穿电压高、热导率大、开关频率高,以及抗辐射能力强等优势。其中,开关频率高意味着应用电路可以采用尺寸更小的无源器件;击穿电压高则意味着电压耐受能力比传统硅材料高,不会影响导通电阻性能,因此能够降低导通损耗。种种优势加持下,GaN 成为了更好支持电子产品轻量化的关键材料。

以氮化镓最为火爆的快充市场为例,与传统快充相比,氮化镓快充具备更大的功率密度,充电和散热速度更快,而且体积更小、便于携带,可以满足消费者对于电子产品充电快与轻量化的双重需求,vivo、OPPO、苹果、三星等手机大厂也接连入局。

今年3月,氮化镓厂商纳微半导体和GaN Systems先后宣布,进入三星Galaxy S22快充供应链,助力实现配套45W快充充电器;7月,Realme发布了真我GT2大师探索版,除了搭配百瓦氮化镓充电头之外,还首次在手机端引入氮化镓功率器件;同样在7月,iQOO宣称已在关键元器件电源开关和PFC两处使用氮化镓,iQOO10Pro更是首次商用200W 超快闪充技术,最快10分钟可将4700mAh大电池从1%充至100%。种种举措再次印证了手机厂商对于GaN快充产品的认可。

数据显示,现如今消费快充市场已成为绝大多数氮化镓功率半导体厂商营收的主要来源。据市场研究机构Yole预测,在消费类电源市场,氮化镓的规模到2027年将超过 9.156 亿美元,2021 年至 2027 年期间的复合年增长率将达到 52%。

与此同时,在相关技术演进和终端厂商的联合推动下,氮化镓的应用场景也在不断扩展。不少分析师纷纷指出,除了消费快充,数据中心、通讯基站、可再生能源等工业,甚至汽车市场等都将成为推动下一个功率 GaN 浪潮的驱动力。

在数据中心和通信两个应用领域,GaN的理论优势正在主流设计中逐渐实现。对于这两个耗电大户来说,GaN电力电子技术可助力终端设备降低电力成本,并提高运行效率,目前Rohm 正在为电信/数据通信应用提供 150V GaN 产品。YOLE预测,用于数据通信/电信的 GaN 市场预计 2021-2027 年的复合年增长率为 69%,到 2027 年价值将超过 6.178 亿美元。

在可再生能源方面,GaN功率元件的优势也十分明显。纳微半导体发布的宽禁带行业可持续发展报告指出,每颗出货的清洁、绿色氮化镓功率芯片可节省 4 kg CO2排放,GaN有望节省高达 2.6 亿吨/年的二氧化碳排放量,相当于650座燃煤发电站的排放量。

至于电动汽车领域,虽然相较于碳化硅的“上车”热潮,当前氮化镓“上车”仍在蓄力中,GaN汽车市场规模仍然很小,但宝马、纬湃科技等车企或Tier1都已经跃跃欲试,其重要的一个转折点就是,2021年宝马与GaN Systems合作,就宝马高性能车载标准氮化镓功率半导体签订了全面的产能协议,合作金额达1亿美元。

据了解,氮化镓在新能源汽车领域主要有三种应用,分别是车载充电器,用于给高压电池充电;DC/DC转换器,将来自高压电池的电力转换给汽车上其他电子设备;牵引驱动或电机控制,可以用于驱动电机。其中,GaN的高速特性作用于车载激光雷达,可助力激光雷达看得更远、更快、更清晰。YOLE预测,到 2027 年,GaN 汽车市场预计将超过 2.27 亿美元,2021-2027 年的复合年增长率为 99%。

在终端市场的驱动下,越来越多的氮化镓厂商开始将电动汽车市场视为下一个目标市场。比如:GaN Systems将与EPowerlabs公司共同合作,为汽车企业交付一款高密度DC/DC功率转换器——DDC48-1K;纳微半导体在上海正式成立电动汽车研发中心,与电动汽车制造商合作开发自己的氮化镓系统。业内预计,基于GaN技术的电动汽车上市时间估计将在2025年前后,汽车领域或将成为氮化镓大规模采用的主角。

低调的“吸金”选手

虽然没有碳化硅那么火爆,但氮化镓的吸金程度也毫不逊色。据笔者不完全统计,除了国外的ST、英飞凌和PI等企业一马当先以外,国内的英诺赛科和纳微也发展迅猛,到这也挡不住氮化镓的发展浪潮。

据不完全统计,2021年国内超9家氮化镓相关企业获得了超12轮的融资,其中禹创半导体、镓未来、能华微电子等3家企业都完成了2轮融资,从透露的投资额来看,芯元基完成了逾亿元B轮;南芯半导体完成了近3亿元D轮融资;能华微电子则是完成了数亿元C轮。此外,2021年封测巨头晶方科技入局氮化镓,投资了以色列VisIC Technologies Ltd.,环旭电子也宣布投资氮化镓系统有限公司,加码功率电子战略。

吸金能力的背后,是氮化镓强大的潜力。同为第三代半导体材料,氮化镓时常被人用来与碳化硅作比较,虽然没有碳化硅发展的时间久,但氮化镓依旧凭借着禁带宽度大、击穿电压高、热导率大、饱和电子漂移速度高和抗辐射能力强等特点展现了它的优越性。据Yole Developpement发布的GaN Power 2021报告预期,到2026年GaN功率市场规模预计会达到11亿美元。

说到GaN功率器件,当前人们的第一反应可能就是快充。从小米开局到苹果入局,氮化镓快充市场爆点不断。2021年10月,苹果推出了旗下首款氮化镓技术充电器,并在全球范围内率先支持USB PD3.1快充标准,一举刷新了USB PD充电器单口输出最高功率,达到140W。相比传统硅器件,氮化镓快充能够显著提升充电速度,并降低系统待机状态的电量消耗,在这个万事都离不开手机的时代,完美得满足了人们“充电2分钟,通话两小时”的需求。当然,除了手机以外,平板、游戏机等也将追求轻量化,这也给氮化镓快充带来了不小的市场。

但需要注意的是,氮化镓的应用领域远不止消费电子领域。据普华有策统计,氮化镓通常用于微波射频、电力电子和光电子三大领域,微波射频方向包含了 5G 通信、雷达预警、卫星通讯等;电力电子方向包括了智能电网、高速轨道交通、新能源汽车、消费电子等;光电子方向则包括了 LED、激光器、光电探测器等。

而其中,5G 通信与新能源汽车也将成为氮化镓未来重点投入的方向。随着汽车电动化、5G通信、物联网市场的不断增长,在小尺寸封装强大性能的加持下,GaN再次成为关注的焦点。在5G通信领域,GaN可以缩小 5G 天线的尺寸和重量,又能满足严格的热规范,所以适合毫米波领域所需的高频和宽带宽。在目前正热的汽车电子市场,氮化镓也可以将汽车的车载充电器(OBC)、DC-DC转换器做得更小更轻,从而有空间放入更多的锂电池,提升整车续航里程。

Yole更是预测,从2022年开始预计氮化镓以小量渗透到OBC和DC-DC转换器等应用中。因此到2026年,汽车和移动市场价值将超过1.55亿美元,年复合成长率达185%。

头顶“环保”光环 将垃圾转化为能源

最近,又有企业拓宽了氮化镓技术的市场边界——成功打入了垃圾处理行业,氮化镓将在全球环保事业中将作出发挥重要贡献。

氮化镓技术成功打入垃圾处理行业,不仅开拓了市场边界,而且能够为全球环保事业作出贡献。据统计,全球每年产生超过20亿吨垃圾,预计未来五年这一数字将增长 70% 以上,2050 年全球废物量预计将达到34 亿吨。

如何处理这么庞大的废弃垃圾,成为了全球各国的棘手难题。过去,燃烧方式是将垃圾转化为能源的主要方法,但这种方法非常不环保,还会产生二噁英等许多有毒化合物。

最近,等离子体气化技术开始流行,它是一种使用等离子体的热工艺,可将有机物质转化为合成气(由氢气和一氧化碳组成)。

这种工艺既经济又环保,一方面,它的高温和缺氧特性,不会产生呋喃、二噁英、氮氧化物或二氧化硫等有毒化合物,另一方面,合成气体可以转化为电能、氢燃料、乙醇等各种终端产品。

但是,目前的等离子体气化技术遇到了瓶颈。

据介绍,相关能源企业正在使用30kW磁控管系统,来为气化系统产生等离子体。但是,磁控管的寿命较短,而且电压高,因此存在重大的可靠性和安全问题。一旦磁控管头出现故障,气化系统会每隔几个小时就会关闭一次,系统频繁关闭,导致能源难以创建可靠的等离子源以及扩大系统规模。

目前,全球知名的等离子体能源公司正式使用RFHIC的氮化镓固态微波发生器,以实现等离子体技术的产业化。

据介绍,RFHIC提供的解决方案是12kW GaN 固态微波发生器,频率范围为2400至2500 MHz。这种固态微波电源采用了碳化硅基氮化镓HEMT,并配备了一个 3 相 380VAC 电源单元、一个控制模块和四个SSPA 架子。

RFHIC的氮化镓微波发生器可以实现频率和相位的精确数字可控,因此其客户能够产生和获得更均匀和更深的等离子体渗透,在更短的时间内处理更多的废物量。

氮化镓基板,多种选择

毫无疑问,在各种终端市场的驱动下,氮化镓技术只会越来越火热,但其发展也会遇到各种难题,衬底制备就是其中之一,GaN 基板成本高、制造难度大。不过,与只能采用碳化硅衬底的碳化硅晶圆不同,氮化镓可经由磊晶的技术沉积在不同的基板上,包括硅(Si)、碳化硅(SiC)、蓝宝石(Sapphire)等。

目前市场上的GaN功率元件主要以GaN-on-Si(硅基氮化镓)、GaN-on-SiC(碳化硅基氮化镓)两种晶圆进行制造。

其中,GaN-on-Si基于基础硅技术上,可用较低的资本支出进行生产,Si 上的 GaN 能够在简单的空间硬控制模式下以高频率和高功率水平运行。目前,GaN-on-Si 用于卫星、用于自动驾驶汽车的激光雷达、增强现实系统、机器人技术等。相关研究人员曾总结道,GaN-on-Si 器件技术在导通电阻、开关速度、热性能、芯片尺寸和成本方面表现出令人印象深刻的性能。

在GaN-on-Si供应链方面,纳微半导体、氮矽科技等大部分厂商都致力于研究600-650V技术,只有IEPC、GaN Systems、台积电、罗姆等小部分厂商发力小于200V的氮化镓技术。据韩媒etnews今年年初报道,韩国晶圆代工厂商DB HiTek将生产基于硅基氮化镓技术的8英寸半导体,通过提高半导体制造的竞争力来简化晶片加工以增强盈利能力。

而GaN-on-SiC则结合了SiC优异的导热性和GaN的高功率密度和低损耗的能力,与Si相比,SiC是一种非常“耗散”的衬底,此基板上的器件可以在高电压和高漏极电流下运行,结温将随射频功率而缓慢升高,因此射频性能更好。经过验证,GaN-on-SiC 器件非常适合基础设施、国防和航空应用,如雷达、电子战、通信、导航及类似应用。

此外,在相同的耗散条件下,SiC器件的可靠性和使用寿命更好,还具有高电阻特性,有利于毫米波传输。Wolfspeed 的联合创始人兼首席技术官 John Palmour 曾指出,与硅相比,SiC 器件可降低系统成本并提高性能,因此,SiC 上的 GaN 被证明具有最佳的整体价值。

值得注意的是,GaN-on-SiC晶圆受限于SiC衬底,大部分被限制在4英寸与6英寸,8英寸的还未推广,目前SiC衬底技术主要掌握在国际少数厂商手上,例如美国Cree、II-VI及ROHM。

当然,除了以上这两种主流技术外,还有GaN-on-sapphire,以及GaN-on-QST、GaN-based-vertical devices、GaN-on-SOT等。

其中,GaN on Sapphire算是最为成熟,也最为常见,主要用在LED领域;QST基板由Qromis研发,具有与氮化镓磊晶层更紧密匹配的热膨胀系数,在制程中堆栈氮化镓的同时,也能降低翘曲破片,更有利于晶圆代工厂实现量产,因此成为了联电、世界先进两大晶圆代工厂的选择。目前,联电透露预计2022年将提供8英寸 GaN on QST方案,主攻650~1,200V的功率范围,世界先进则将于2022年如期量产基于QST基板的氮化镓组件。

国内外龙头企业技术洞察对比

报告显示,全球氮化镓主要创新主体的龙头主要集中于日本。氮化镓产业国外重点企业包括日本住友、美国Cree、德国英飞凌、韩国LG、三星等(如图5),中国企业代表有,晶元光电、三安光电、台积电、华灿光电等(如图6)。但目前中国企业和国外企业相比,专利申请数量仍有一定差距。

在这些企业中,日本住友全球率先量产氮化镓衬底,是全球氮化镓射频器件主要供应商,同时也是华为GaN射频器件主要供应商之一。住友聚焦于衬底和器件方面的研究,其中,器件方面近几年侧重于氮化镓FET器件。该公司的氮化镓衬底单晶生长技术侧重HVPE法,重点解决衬底缺陷、尺寸等难题。此外,住友在氮化镓FET器件上,侧重外延工艺和芯片工艺突破。

美国Cree依靠其技术储备支撑氮化镓功率器件的市场化。2019年,Cree逐步剥离LED业务,专注于碳化硅电力电子器件和用于GaN射频器件,并于2021年正式更名为Wolfspeed(原Cree旗下的功率&射频部门)。在技术分布上,发光二极管LED和GaN基FET器件两大方向是Cree重要的专利布局领域。其中,前者的研发热度在近几年明显衰退,而Cree在后者的细分领域中则探索了较多的技术难题,注重器件多性能发展。

德国英飞凌持续深耕功率器件领域,且重点关注美国市场。其前身作为西门子集团的半导体部门,英飞凌主要生产IGBT、功率MOSFET、HEMT、DC-DC转换器、栅极驱动IC、AC-DC电源转换器等功率半导体器件,曾连续10年居全球功率半导体市场之首。在氮化镓领域,英飞凌的技术分布于集中产业链中游——器件模组,持续关注GaN基FET、IGBT等功率元器件,以及由多个功率元器件集成的功率模块(如电源转换器)的研发。总体而言,英飞凌在功率模块、GaN基FET器件上布局的专利最多。

国内LED龙头“三安光电”在氮化镓领域有一定技术储备。三安光电是目前国内规模最大的LED外延片、芯片企业。2014年,该公司投资建设氮化镓高功率半导体项目;2018年,在福建泉州斥资333亿元投资Ⅲ-Ⅴ族化合物半导体材料、LED外延、芯片、微波集成电路、光通讯、射频滤波器等产业。在氮化镓领域,三安光电同样集中于产业链中游——器件模组的研究。其布局的器件类型主要包括可见光LED、紫外LED、Micro/Mini LED和GaN基FET。2016年后,三安光电对可见光LED的专利申请量逐渐下降,并开始增加对Micro/Mini LED、GaN基FET的专利申请。

总的来说,虽然氮化镓制备以及功率器件产品都还存在着不足,但业界也提出了相应的技术方案进行解决,随着技术发展不断推陈出新以及GaN半导体的可靠性得到证实,未来氮化镓也将有望成为引爆第三代半导体的商机。

文章来源: 半导体行业观察,第三代半导体风向,齐鲁壹点

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...