未来传感器才是服务机器人的最大“王牌”,我国已有不少校企实现类人“感知”

微观人 2022-12-05
4538 字丨阅读本文需 11 分钟

特斯拉即将推出的人形机器人有望使人类的生活方式发生史诗级的变革,从而开启一个全新时代,基于全球约4亿人力劳动替代的假设,一个百万亿级别的市场,充满爆发性的未知和机遇。

根据全球科技情报公司ABI Research的最新报告,到2027年,智能家居系统和消费者机器人的各种类型的传感器将从2021年的18亿个增加到46亿个。传感能力的革命将是下一波智能家居自动化和采用的基础,使智能家居系统和消费者机器人能够更好地匹配用户的偏好,并解决更广泛的问题。

从二级市场的表现来看,目前关注度最高的是机器人核心的零部件,以国内供应商最有可能介入的减速器为代表。这是务实之选,但未免受制于现有工业机器人的经验,仅仅考虑了机器人的“行动能力”。但一个完整的人工智能型机器人,还需要感知能力、学习能力,甚至是思维能力。

未来机器人产业将离不开传感器

考虑到未来家庭或者社区应用场景,传感器可能才是人形机器人最能区别于工业机器人的核心部分。根据民生证券近期的机器人产业链研究报告发现,相较工业机器人,在传感器的角度,人形机器人全身需要多处传感器,因此在生产成本中也占有较高的比重。如果特斯拉人形机器人落地,一些原本已进入特斯拉产业链的传感器供应商,机会更为明显。

我们目前能够看到的最贴近未来的人形机器人案例之一,是波士顿动力的Atlas。自2016年首次亮相以来,波士顿动力双足机器人Atlas刚出场时其形象还人不人鬼不鬼,在滚动履带上甩着两条扭曲的大长腿,随后不仅外观越来越炫酷,而且新技能不断刷新人类认知。最近的一段公开视频显示,Atlas连续地越过台阶,跑过斜坡,走过平衡木,甚至还单手支撑身体越过横杆,一系列动作下来灵巧度不输人类。从简单完成事先设定的编程,到自主行动,Atlas靠的正是传感器感知环境。

最初版本的Atlas头部装有激光雷达和立体传感器,这能够帮助它躲避障碍物、识别地形变化、辅助导航等。在2018年的迭代中,Atlas可以利用计算机视觉来标记和定位自己,以帮助其在跑步和跳跃过程中准确定位落脚点。但是这还远不能支撑Atlas自主行动,它需要将传感器数据转换为对决策和规划身体动作有用的信息,以识别障碍物和自主导航。现在,Atlas可以利用头部的RGB摄像头和TOF深度传感器获取更加全面的环境信息。

事实上,现代人的生活已经被大量的传感器渗透,而且呈现多传感器深度融合的趋势。更广为人知的应用是汽车。传感器作为实现智能化的核心硬件,重要性并不亚于动力系统。汽车传感器可根据使用目的不同分为车身感知传感器和环境感知传感器。车身感知传感器提高了单车自身的信息化水平,使车辆具备感知自身的能力,主要包括位置传感器、压力传感器、温度传感器、(线)加速度传感器、角(加)速度传感器、空气流量传感器、气体传感器。环境感知传感器实现了单车对外界环境的感知能力,帮助汽车计算机获得环境信息并做出规划决策,主要包括车载摄像头、超声波雷达、毫米波雷达、激光雷达。

中金最新研究报告称,汽车行业电动化、智能化功能持续迭代,感知层成为自动驾驶核心部件之一。随着高级别辅助驾驶从L1到L5的持续突破,感知层在车身状态和环境感知两大维度进行品类升级和扩张。经测算,2026年全球、中国汽车传感器市场空间分别有望达到3803/1449亿元。以智能化汽车作为参照,机器人的传感器将开拓出一个全新的市场。考虑到机器人执行任务以及应用场景的不同,较汽车有着明显的不同。环境感知方面,以人的五感来对比,汽车以视觉、听觉为主,而机器人增加了触觉,甚至还有嗅觉(不排除将来有味觉)。自我感知方面,因为动作的复杂性,需要更精准的姿态感知、力量感知、速度感知。

腾讯花四年打造了机器人的感知“世界”

在国内,有一家实验室致力于推进人机协作的下一代机器人研究,打造虚拟世界到真实世界的载体与连接器。它就是 2018 年成立的腾讯 Robotics X 实验室。目前实验室的研究方向包括作为机器人基础技术的视觉、触觉等感知能力,以及灵敏运动、灵巧操控、智能体三大支柱技术。

近期,该实验室联合其他科研团队在 Nature Communications、Science Advances 和 ACS Nano 期刊上发表了一系列代表性论文。下面我们选取了两个主要的传感器进行探讨。

触觉传感器

触觉传感器用来测量传感器与环境的物理交互所产生的信息,通过模仿生物皮肤的触觉感知功能,检测接触事件发生时的机械、温度、疼痛等多模态的刺激。人体皮肤对硬度、粗糙度、温度、振动等具有细腻的触觉感知,通过综合分析物体的各项触觉信息,使手部肌肉施加合理的力,进行自适应的抓握。

在电子皮肤的辅助下,智能机器人系统或假肢也可以利用触觉信息进行运动轨迹规划、物体操纵、安全操作,并从环境中获取各种信息。但对于自由度越来越高的刚体机器人,传统扭矩传感器昂贵且难以部署,所以开发柔性、高灵敏度、高空间分辨率、多模态的电子皮肤是实现高效感知和控制的重要一步。

目前业界已经出现基于电阻式、压阻式、电容式、压电式、摩擦电纳米发电机(TENG 式)、光纤式、基于视觉等工作原理的机器人触觉感知方法。

目前,压阻式传感器因其构造简单成为机器人触觉传感器的重要发展趋势,但因灵敏度较低、检测压力范围较窄、响应速度较慢等缺点,目前仍处于实验室研究阶段。另外,制作材料也是压阻式传感器面临的一大难题。

虽然导电纳米材料(如碳纳米管、纳米纤维、银纳米粒子、金纳米线)与聚合物弹性体(如聚氨酯、PDMS)合成的压阻薄膜是首选材料之一,但在实践中,导电纳米材料很难均匀地分散在制膜前驱液中,导致压阻薄膜灵敏度较低。

业界已有通过将表面处理成各种微结构进而增加压阻薄膜与电极之间接触面积的方式来增强灵敏度,比如美国斯坦福大学鲍哲南课题组曾利用空心球微结构制作锯齿状压阻式触觉传感器阵列(2014)。然而,基于模具的微结构限制了单个传感器的尺寸并阻碍其向大型传感器阵列的集成。

因此,腾讯 Robotics X 实验室一方面致力于提升压阻薄膜的灵敏度、压力检测范围、响应速度、线性度等各项指标,为应用于机器人的触觉传感器提供优越的电子材料;另一方面研制高分辨率的晶体管基阵列,提升触觉传感器的图形分辨率。

实验室在与清华大学集成电路学院合作的 “Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch” 论文中,将上述压阻式传感器的各项指标达到了领先水平。该论文已在 ACS Nano 期刊上发表。

触觉执行器

如果说传感器是感觉器官,则执行器是控制器官。执行器是实现高性能触觉反馈(触觉渲染)的重要组成部分,通过末端执行器产生的振动或作用力获得良好的触觉反馈,增强交互沉浸感,进而实现更高效的响应及控制。

人体触觉渲染主要分为两类,即动觉(Kinaesthetic)与压觉 / 肤觉(Tactile)。动觉是普通意义上的力与力矩反馈,作用于骨骼、关节、肌腱等。压觉是由人体皮肤形变与摩擦振动而带来的反馈,作用于真皮层的四种机械感受器,它们分别用来感受不同频率和强度的皮肤形变与摩擦振动。触觉对于渲染连续性的要求要高很多,动觉一般要达到 1000Hz 才能保证人体感受到力 / 力矩的连续渲染,而压觉一般也要求 250-700Hz 才能保证连续性。

对应于人体的触觉渲染,实现机器人触觉渲染的执行器也分为压觉和动觉两种,它们的评价标准各有不同。目前执行器领域出现了电磁式、压电式、电刺激、气动式等多种激发方式,它们在响应速度、分辨率和安全性等方面的表现各有不同。一般来讲, 因为执行器和人体直接接触产生交互,所以对于其电压、发热、体积、重量等方面均有较高要求。

压觉反馈的评价标准包括空间分辨率、最大压觉刺激强度、刺激强度等级和响应时间。其中空间分辨率决定了压觉反馈系统能够在单位面积上给予人体多少个不同位置的刺激。人体的压觉感受器主要分布于双手, 尤其是指尖,在指尖正中间的感受器密度可以达到 80/cm^2。较新的压觉反馈能够在指尖实现 3mm–5mm 的密度,即每个指尖可以做到 8–38 个压觉反馈点。

最大压觉刺激强度决定了每个压觉反馈点能够渲染的最大「力道」,刺激强度等级决定了每个压觉反馈点从最轻微到最用力之间渲染出多少个等级,响应时间决定了每个压觉反馈点的变化快慢程度,越接近 250-700Hz 响应度越好。

压觉的实现方式多种多样,目前尚无明显优势的技术方案。以 Meta、HaptX 为例,两家均采用气动方式,但受限于气囊尺寸、充放气管道数量、充放气控制器通道数和气泵尺寸等因素,这种方式仅限于实验室场景部署,较难落地应用。

腾讯 Robotics X 实验室在压觉渲染上布局多年, 现在已经研究出三种完全不同的实现方式, 并各有其优缺点。其中可穿戴、电刺激触觉重现装置相关的工作于 2022 年在 Science Advances 上发表。

一是微电流压觉执行器阵列(电刺激)。此方式可以在单一指尖上以 20 个不同强度的微电流渲染 105 个触觉点(通过超分辨率算法),频率可达 4KHz,在指尖中央区域可以做到 80 个触觉点 / cm^2,成为业内首款可以达到人手机械感受器密度的压觉执行器阵列。它可以实现在指尖上单纯利用压觉辨别所有英文字母和数字,准确率达到了 90%。同时工作电压由之前研究工作中常用的 300-500V 降低到 13-28V,位于人体安全电压以下。形态上为一片柔性电路,不存在重量 / 体积的问题。

其二是基于电磁的压觉执行器阵列(机械刺激)。此方式可以在单一指尖中心区域以不同频率(1-500Hz)渲染 13 个触觉点,工作电压为 5V,形态上为一块硬质基板上的电路 + 执行器阵列。此方式的渲染原理为物理接触,相较于电刺激,其触觉感受更为明显与自然。

其三是基于气动的 TPU 压觉执行器阵列(同样为机械刺激)。实验室现有的控制器 + 气泵尺寸约为成年人背包大小的 2/3,可以同时输出 16 路、5V 供电,一个小型充电宝即可供整套系统工作超过 3 小时。同时制备效率极高,在成本、舒适性方面也都极具优势。此外也可以根据需求制备出不同尺寸的阵列,供手臂、前胸、后背等人体各个部位驱动。

为智能机器人打造类人的感知“皮肤”

让机器人来帮我们倒水,实现的可能性大吗?

接触杯子、开始倒水、判断接水量、接几分满、送到指定位置、放下杯子。这些我们再平常不过的操作,对智能机器人而言,能否精准操作绝对是个考验。

成功与否,智能机器人的“皮肤”,也就是触觉传感器在当中起了至关重要的作用。当一款适合的柔性传感器贴附于机器人的手时,整个倒水过程就可以精确地被检测到,以此辅助其进行类人的高灵巧操作。

这样的场景,在周伟教授团队的实验室上演了很多次。

近日,厦门大学周伟教授团队在柔性触觉传感器研究领域取得重要进展,提出了可以实现超灵敏高频动态力检测的柔性触觉传感器新工作模式,突破了传统传感器灵敏度的理论极限值并得到显著提升。这意味着,有了该传感器,机器人操作灵巧度将有望得到大大提升。

这一研究成果发表在《Nature Communications》期刊,厦大航空航天学院机电工程系张金惠博士后为论文第一作者。

当前,在智能机器人动态力检测应用中,常常使用压电式柔性触觉传感器,但传统的压电式柔性触觉传感器灵敏度受限于自身灵敏度理论极限值。也就是说,智能机器人的“皮肤”从接收到指令到执行操作的灵巧度并不如人意。

周伟教授团队的突破在于为智能机器人“皮肤”提出了全新的工作模式,大大提升了“皮肤”的灵敏度。

周伟说,研究工作受节肢动物结构组成的启发,提出的这种仿生型“刚柔并济”柔性触觉传感器,不仅可提升柔性材料的力传递效率,而且颠覆了传统压电式柔性触觉传感器的工作模式,使传感器灵敏度得到显著提升且可达到理论极限值的17倍,并具有实时力方向识别的优异性能。

也就是说,有了该传感器,智能机器人的操作会更灵巧,也会更灵敏地感知三维力。

据介绍,该研究成果不仅为压电式触觉传感器进一步深入研究提供了新方法和新思路,尤其是对智能机器人建立类人的触觉感知系统具有重要的理论研究价值和意义。

这款完美融合“刚柔并济”的类人感知“皮肤”是怎么来的呢?研究之初,周伟教授团队就一直在思考这个课题并付诸实践。

柔性的基体加上刚性的微结构——这种类节肢动物的刚柔并济结构能否实现?两年时间里,一次又一次叠加的失败经历,该团队一直在努力尝试。

环氧树脂、石蜡、聚二甲基硅氧烷、硅胶……这两年,张金惠化身为“材料专家”,以及“排列组合专家”。“我们的方向和目标是明确且正确的,只是没有找到最佳的方案。”张金惠说,“当然,科研就是一个不停试错的过程,持之以恒、坚持不懈是最有效的,也是最有用的解决问题的办法。”

成百上千次的实验,最终摸索出完美融合的“刚柔并济”结构。厦大航院实验室里的“机械臂”就是在这样的探索下成功实现了对动态力的超灵敏感知及灵巧操作。

“未来,该触觉传感器不仅适用于智能机器人,也有望在医疗、汽车、可穿戴设备等领域进行运用。”周伟说。

文章来源: 闽南网,机器之心,题材价值投机

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...