人类首次在聚变反应中实现净能量增益!零排放“人造小太阳”离商业应用还有多远?

核能知了 2022-12-14
2955 字丨阅读本文需 7 分钟

美国时间12月13日上午的新闻发布会上,美国能源部长詹妮弗•格兰霍姆宣布:其在可控核聚变实验中取得了重大突破。

12月5日,在美国劳伦斯利弗莫尔国家实验室(LLNL),那台有3个足球场那么大,配备了192个激光器的国家点火装置(NIF)上,第一次实现了能量的正收益。

在之前的实验中,由于核聚变发生的条件实在过于苛刻,激光所用的能量往往高于聚变反应产生的能量,最多也只是打平,这让整个系统如同一个效益不佳的工厂,压根无法可持续运营。

而这一次,首次实现了聚变反应的净能量增益,即输出能量大于输入能量。根据劳森准则(Lawson criterion),当生产的能量高于损失时,系统将产生净能量, 如果足够多的能量被燃料捕获,系统将可以自我维持,这个系统便“点火”成功了。

在人类的能源史上,这可能是个里程碑式的事件,CNN的报道中,脱碳研究投资公司Carbon Direct的首席科学家胡利奥·弗莱德曼(Julio Freidmann)对这个“里程碑”解释道:“这非常重要,因为从能源的角度来看,如果你输出的能量不超过输入的能量,它就不能成为能源”。

而现在,这一切做到了。没有辐射、没有碳排放,如同科幻电影中的聚变发动机,只需要提供氢元素,就有能量供给。

科学家们复制了“仅在恒星和太阳上可以达到的某些条件”,格兰霍姆说:“这一里程碑使我们朝着为我们的社会提供动力的零碳丰富聚变能源的可能性迈出了重要的一步”。

不过,这只是在实验室进行的原理验证水平上的成功,从实际应用的角度看,离最终的“圣杯”还差得很远。

01

零排放的“人造小太阳”

当氘、氚(氢的同位素)等较轻元素的原子核相遇时,会聚合成较重的原子核,并释放出巨大能量,这一过程就是核聚变。核聚变在太阳中的运作方式是将普通的质子(氢原子核)熔合成氦-4,并在此过程中释放能量。因为与太阳产生能量的原理相同,一直有零碳能源之称的核聚变反应被称为“人造小太阳”。

自上世纪50年代以来,科学家们一直在努力证明聚变反应可以释放出比输入更多的能量,LLNL最新研究结果,终于验证了这一设想。而核聚变过程可控,使研究成果最终能够用于能源等民用领域。

“核聚变一个好处是不会产生放射性废物,过程是环保的。而目前在运行的核电站是核裂变反应,其中用的原料铀,会产生放射性废料,会损害人类环境,即便深埋。日本福岛发生核泄漏事件后,日本德国都停止了核电站运行,全球核电站建设也放缓了。”

谷渝秋还透露,聚变反应原料是氢燃料,氢自然界取之不尽用之不竭,它可以实现自循环,而且无碳。“小太阳是指它可以自循环,产生无穷无尽的能量。”

02

人造太阳“正循环”,怎么实现的?

所谓激光核聚变,是用高功率激光作为驱动器,照射核燃料标靶的惯性约束核聚变。

基于激光的反应堆,可以让核聚变在很短的时间内发生,而且现在已经一定程度上跨过了净能量增益的门槛。

所谓“惯性”,简单来说,就是在极短时间内对聚变反应中形成的等离子体增温增压,利用内部原子核自身的惯性,让它们在向四周膨胀逸散之前就克服彼此之间静电斥力,完成融合。

具体过程是:使用激光照射核燃料标靶,在光束加热作用下,颗粒等目标容器会向外爆 炸。

在爆 炸过程中,除了容器表层,其余部分会产生反作用力,使其向内加速并压缩里面的燃料。

另外,这个过程还会产生大量冲击波,压缩并加热中心的燃料,从而促使核聚变发生。

但如果想要将聚变反应堆应用于商业发电,就需要让激光器每秒加热目标至少10次。这并非根本不可能,但从工程角度来看,是非常困难的。

LLNL实现突破的方法,是利用美国的国家点火设施(National Ignition Facility,NIF)——世界最强大的激光点火装置,用多达192道的激光束,照射处于辐射平衡态的空腔(hohlraum),也就是包裹着氘和氚,针头大小的球状颗粒。

通过激光作用,氘和氚的混合物形成了超热氢等离子体。

另外,在反应过程中,产生的X射线炸开了原来的粒子,燃料层内爆,为核聚变的发生创造了条件。

最终在NIF的加持下,这次实验产生了足够多的热量,并且这些热量在燃料中传播足够快,使得输出的能量超过了输入。

这次实验结果,其实也是一种“大力出奇迹”。

03

商业应用或要等几十年

一位不愿具名的专家透露,“人造小太阳”应用领域非常广泛,可以一了百了地解决能源问题,就像能够随时制造“小太阳”一样。

正因为核聚变有终极能源之说,目前全球核大国都在投入核聚变研究。法国国际热核聚变实验堆已经实现了大规模打靶。俄罗斯也在做相关的驱动器研究,中国相关研究几乎与国际同步。

许多科学家认为,核聚变商业落地还需要几十年时间。但是,这项技术的潜力却很难被忽视。因为一小杯氢燃料理论上可以为一座房子提供几百年的能源。

谷渝秋认为,核聚变应用还有相当长距离,这主要取决于激光技术进步程度。“原理没问题了。但现在激光打一炮重复频率太低,如果能像光纤激光器一样就可以搞定了,这需要科学上的突破。”

朱健强表示,上世纪八十年代中期,上海光机所成立,开启了激光聚变事业的新纪元。现在,激光聚变点火成功了,下一步应该是怎么把点火效率做高的问题。“做这个事情需要勇气和信心,因为没有先例,也没有标准模式,大家都是在探索。”

04

两大技术路线,谁会胜出?

在人造的物理环境中,很难实现超高压与超高温兼得,这意味着,人类必须制造出比太阳更极端的高温环境。

在过去的几十年里,可控热核聚变研究形成了两大分支。一个发展方向是NIF这类的利用超高强度激光在极短的时间内辐照来产生聚变。

而另一种,则是磁约束聚变,即用磁场约束聚变物质。这个路线的主攻方向是托卡马克装置(比如中国的东方超环EAST 和国际热核聚变实验堆ITER),另外还有仿星器,反向场箍缩及磁镜等装置。另一发展方向是惯性约束聚变,主攻方向是激光聚变,另外还在研究轻、重离子束聚变及其它装置。

托卡马克,是磁约束装置的几种类型之一,这个名字是俄语“磁线圈环形真空室”的缩写,它的构想来自20世纪50年代前苏联科学家。

1954年,第一个磁约束装置建成,它的形状像一个平放的轮胎,在轮胎中,环形的磁场把几亿度高温的等离子体约束在其中,于是,这种环形的磁场又叫磁瓶或磁笼。

托卡马克装置的主要特点是采用很强的纵向磁场,跟等离子体电流本身产生的角向磁场合成了具有回转变换的螺距很大的螺旋型磁场。这种磁场位形基本上具备了等离子体的稳定三要素,即平行磁场、磁阱和磁剪切,因而它能有效地克服各种宏观不稳定性。

因此,托卡马克是用于生产可控热核核聚变能中的一个最被深入研究的候选类型。事实上,在NIF本次突破之前,托卡马克类型的磁约束研究常被认为是领先于其他途径,是最有可能率先成功的可控聚变方式。

六十年来,全世界共建造了上百个托卡马克装置,在改善等离子体加热和磁场约束上下足了功夫。

在1970年,苏联托卡马克装置T-3上实现了核聚变能量输出,能量增益因子Q值为十亿分之一。等离子体约束时间很短,大多以毫秒计算,由此各国开始建设大型托卡马克的热潮。美国TFTR,欧洲JET,日本JT-60和俄罗斯的T-15,就是表现特别突出的四个研究装置。

1997年9月22日,联合欧洲环JET又创造输出功率为12900千瓦的世界纪录,Q值达0.60,持续时间2秒。仅过了39天,输出功率又提高到1.61万千瓦,Q值达到0.65。

人们发现,托卡马克装置中约束等离子体的磁场,虽然不怕高温,却很不稳定。为了维持强大的约束磁场,需要非常强大的电流,时间长了,线圈就要发热,寿命非常有限。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,使磁约束连续稳态运行成为现实。

托卡马克与NIF方式究竟哪个会胜出?

一位研究者告诉笔者:“NIF和托卡马克都是有类似的瓶颈,那就是如何实现能量正收益。托卡马克主要的问题是第一壁的材料,如何长时间约束高温等离子体,实现可自持的核反应。NIF这样的激光惯性约束聚变中,材料问题不是主要问题,毕竟反应的靶丸(capsule)非常小,反应不具有可持续性也是很大问题,然而,反应能量的输出和转移并没有托卡马克成熟。”

目前的中国,我们有自己的托卡马克装置——先进实验超导托卡马克实验装置(EAST),也是世界上最大的托卡马克装置ITER的重要参与方。ITER于2006年启动,是之前各种技术的集大成者,其目标是产生50万千瓦的聚变功率,离子温度1.5亿度,维持至少400秒,放电3000秒,能量增益Q>10。

文章来源: 智能车参考,新华每日电讯, 知识分子

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:核能知了
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...