数字化转型加剧安全挑战,应如何构建电力网络安全防护体系?

发电技术团 2023-02-07
3344 字丨阅读本文需 8 分钟

随着电网的不断互联和电力市场的逐步实施,电力系统的运行环境更加复杂,对电网的安全稳定运行要求也越来越高。电网的不断发展与创新,对电网安全稳定运行提出了新的要求,现代电力系统规模迅速发展的同时也带来了更多更复杂的安全隐患和稳定问题。

一、电力系统的安全稳定运行面临更高要求

随着我国经济快速发展和人民生活水平的日益提高,经济和社会发展对能源、包括对电力供应的依赖程度更强,对电力的需求越来越大,对电力系统供电可靠性的要求越来越高。电力系统的安全稳定运行直接关系到国民经济的发展和人民群众的生活。随着电力系统向着高电压、大机组、现代化大电网发展,电力系统的运行方式更复杂,输电距离更远,因此对电力系统的安全稳定运行提出更高的要求。

近日,国家能源局综合司印发《2023年电力安全监管重点任务》(以下简称《重点任务》),明确电力安全监管目标,对今年的安全工作进行了部署。

2023年电力安全监管目标是杜绝重大以上电力人身伤亡责任事故、杜绝重大以上电力安全事故、杜绝电力系统水电站大坝垮坝漫坝事故,确保电力系统安全稳定运行和电力可靠供应,保持电力安全生产形势稳定。

二、新型电力系统网络安全主要面临以下风险挑战:

(一)“新电气化”公共设施平台网络安全风险

新型电力系统下终端能源消费“新电气化”进程加快,工业、建筑、交通三大领域终端用能电气化水平将从目前的30%、30%、5%提升至2060年的50%、75%、50%。从单一电力系统向综合能源系统演变,现有的电力系统将与热气管网、天然气管网、交通网络等能源链进行互联互通,形成多领域综合能源网络。

此时,新型电力系统的市场格局、市场机制、交易方式等将重塑,参与电力市场交易的主体越来越多,由于公共设施平台数据共享和交互的需要,一是对电力市场交易数据、用户隐私数据等敏感数据的完整性、保密性、可用性保护将进一步加大,存在泄密、篡改的风险;二是用电负荷以及负荷集成商、其他能源链缺乏有效的网络安全防护措施,存在安全隐患,利用其集中管控平台漏洞可操控集成商下辖的所有可调节负荷资源,进而造成电力系统故障。

(二)“智能化”分布式终端网络安全风险

新能源发展呈现出集中式与分布式并举的态势,不同投资主体的配电网、风电、光伏及电动汽车充电设施等设备接入电网,新能源、电力电子装备将出现爆炸式增长和海量接入。

电力监控系统安全边界模糊不清,如电动充电桩、智能楼宇、虚拟电厂、储能集成等新能源可调节负荷的多样化接入,新型电力系统网络空间更加庞大和复杂,分布式设备多处于无人值守的开放物理环境中,容易遭受物理利用、固件篡改等,网络暴露面日益扩大,攻击跳板增多;新型分布式终端类型繁多,数据传输方式尚未标准化,接入以无线公网为主,缺乏统一的安全防护技术标准,存在带病入网等问题;不同业务的分布式终端对电网基于分区隔离的安全防护架构带来冲击,管理难度进一步增大。

(三)“数字化”新系统、新技术网络安全风险

随着电网数字化转型,云计算、大数据、物联网、5G等新技术在电网行业中发挥越来越重要的作用。

5G、IPv6技术实现新能源及电力电子设备高速、友好接入;边缘计算、物联网等技术支撑实现就地决策与增值服务;大数据、云计算、人工智能等技术,实现可赋能生产管理和生产决策,新技术下的电力监控系统为支撑电网安全稳定运行,推进新能源及系统调节资源的可观、可测、可控能力体系建设提供技术基础。而新技术的网络安全内生隐患,如网络融合、传输安全、漏洞缺陷等,在与新型电力系统融合应用中将带来新的风险。

三、提高电力系统运行安全稳定性的对策研究

(一)常态化攻防安全

建立常态化攻防机制,开展技战法研究,提升系统主动防御能力。针对电力交易系统等重要对外开放系统开展常态化层层攻防。在设计阶段进行第三方组件选型、安全架构审查;在开发阶段进行源代码审计;在测试阶段进行入网安全测评;在投运阶段进行安全众测;在运行阶段进行攻防渗透、专项评估;在总结提升阶段进行技战法研究。

常态化开展网络安全监测工作,强化网络安全专业运行机制,通过电力系统网络安全监控中心开展7×24小时值班,落实网络安全异常监测和应急处置机制,确保网络安全。

(二)物联网安全

针对新型电力系统多样化业务,首先要历清职责界面,研究分布式终端统一网络安全技术标准和网络安全分区原则,构建责权清晰、高效协同的管理机制。

其次基于源代码审计、网络安全审查、入网检测的供应链管控,通过工控设备、物联网设备及协议漏洞的挖掘,防范新型电力系统终端侧漏洞、协议脆弱性等安全风险,提升系统本质安全水平。

再次要开展物联网可信计算体系的研究,基于可信计算、态势感知、工控流量基线等技术,从身份可信、程序可信、配置可信、行为可信多个层面进行检查和主动防御,保证分布式终端的可信接入,加强安全威胁智能分析和异常自动处置。

最后通过覆盖各个环节,开展“感知层防御、接入层防御、平台层防御”的多重防护手段建设,打造“精准防护、高效防护”的新型电力系统全场景网络安全防护体系,实现智能主动防御。

(三)研究新的智能数据分析方法

1 运用数据仓库技术有效利用电力系统中的大量数据。数据仓库是一种面向主题的、集成的、不可更新的、随时间不断变化的数据集合。它就像信息工厂的心脏,为数据集市提供输入数据,数据挖掘等探索。

数据仓库具有如下四个重要的特点:①面向主题:主题是在一个较高层次上将数据进行综合、归类并进行分析利用的抽象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的完整、一致的描述,能统一地刻画各个分析对象所涉及的各项数据,以及数据之间的关系。②集成的:由于各种原因,数据仓库的每个主题所对应的数据源在原有的分散数据库中通常会有许多重复和不一致的地方,而且不同联机系统的数据都和不同的应用逻辑绑定,所以数据在进入数据仓库之前必须统一和综合,这一步是数据仓库建设中最关键、最复杂的一步。③不可更新的:与面向应用的事务数据库需要对数据作频繁的插入、更新操作不同,数据仓库中的数据所涉及的操作主要是查询和新数据的导入,一般不进行修改操作。④随时间不断变化的:数据仓库系统必须不断捕捉数据库中变化的数据,并在经过统一集成后装载到数据仓库中。同时,数据仓库中的数据也有存储期限,会随时间变化不断删去旧的数据,只是其数据时限远比操作型环境的要长,操作型系统的时间期限一般是6090天,而数据仓库中数据的时间期限通常是5-10年。

2 运用数据挖掘技术挖掘电力系统中潜在的有用信息。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘的功能和目标是从数据库中发现隐含的、有意义的知识,它主要具备以下五大功能:①概念描述。概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的'共同特征,后者描述不同类对象之间的区别。②关联分析。数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。③聚类。数据库中的记录可被化分为一系列有意义的子集,即聚类。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术的要点是,在划分对象时不仅考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。④自动预测趋势和行为。数据挖掘技术能够自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接地由数据本身得出结论。⑤偏差检测。数据库中的数据常有一些异常记录,从数据库中检测这些偏差意义重大。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差等。

在电力系统初期,安全控制装置简单、功能单一。随着科学技术的发展,尤其是计算机技术的应用,电力系统中的控制装置也由单一控制措施的就地控制装置发展为多控制措施的区域控制系统,对保证系统稳定运行以及防止事故扩大等发挥了重要作用。但从我国安全稳定控制装置开发应用的经验和教训看,仍然存在着诸如系统安全稳定控制的合理规划配置及有效管理、系统动态分析和数学模型的建立及规范化、稳定控制策略的实时性、控制信号远方传送的可靠性等需要解决的问题。

结语

在“双碳”战略目标的引领下,新业务、新场景、新模式层出不穷,电力系统网络安全风险不断加大。随着电力系统的市场化运营,电力系统的运行状态千变万化,潮流的随机性加大,与之相适应的控制措施及策略是电力系统安全稳定运行的保证。通过管理和技术层面构建新型电力系统网络安全风险管控体系,实现电力系统本质安全,为新型电力系统建设和安全稳定运行保驾护航。

文章来源: 中国能源报,盖艾特,中睿天下

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:发电技术团
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...