智能汽车大风口带动传感器小风口,哪些传感器够资格上车?

微观人 2023-03-10
4018 字丨阅读本文需 10 分钟

智能化已成为汽车产业的重要发展方向之一,近几年各车企都在该领域加速布局,在此基础上,市场对车用传感器的整体需求也迎来了爆发式增长。

以激光雷达、4D成像毫米波雷达等为代表的多传感器融合感知技术势必会成为以后大多数智能网联汽车的标配,尤其是在未来2-3年内,激光雷达的产量与装车量也将会出现大幅度提升。

汽车智能化推动传感器技术的快速进步

我们可以预见的是,汽车智能化已经是大势所趋,Statista的数据预计,今年自动驾驶领域的市场规模将达到1200多亿美元,未来几年先进驾驶辅助系统(ADAS)将会逐步开始商业化应用,且更高级别的自动驾驶技术也是呼之欲出。

IDC预测,从2020年至2024年,全球自动驾驶汽车的出货量将从2773.5万辆增加到2024年的5424.7万辆,届时L3级别自动驾驶汽车的出货量有近70万辆,自动驾驶汽车的渗透率将超过5成,年复合增长率为18.3%。

在自动驾驶技术快速发展的背景下,麦肯锡预测从2020年至2030年,ADAS及AD系统所需传感器的市场规模将由130亿美元增长到430亿美元。

目前自动驾驶汽车对周围环境的探测有两种方式,一个是重算法的视觉感知模式,另一个是以雷达为主的多传感器融合感知模式,这其中又以后者为主流,它以雷达作为主要的环境探测设备,车用雷达能提高系统探测的精准度与可靠度,进而大幅提升汽车整体的安全性能。

按照探测原理来划分,车用雷达又可以分为激光雷达、毫米波雷达和超声波雷达,激光雷达具有精度高、探测距离较远、抗干扰能力强等优点,能够提供三维深度信息,如蔚来ES7的图达通猎鹰半固态激光雷达,探测距离可达500米,不仅看得较远也看得更准。

毫米波雷达对天气与环境的适应力更强,探测距离一般在200米左右,但对复杂场景的分辨能力较弱,超声波雷达的生产成本较低,多作为激光雷达和毫米波雷达的辅助与补充,主流产品有24G 和77G这两种规格,其中77G的波长范围小于4mm,能识别距离最远250米的物体,可用于中长距离的驾驶环境探测。

特斯拉一直是视觉感知技术的践行者,去年中旬,特斯拉推出了只用摄像头作为传感器的驾驶辅助系统FSD,未来搭载FSD 10.13版的汽车还能在没有地图数据的陌生环境中行驶,视觉感知简单来说就是用摄像头来模拟人的双眼,帮助自动驾驶汽车看清楚其周围的环境。

但目前该技术尚无法达到人眼的视觉水平,还需要通过长时间的数据积累与算法迭代升级来提升探测能力,并且无论是双目摄像头还是三目摄像头,都只能探测到部分深度数据,当距离越远时,探测数据的准确性就会逐渐下降。

与车用雷达相比,视觉感知技术所需的算法就更为复杂,不过好在其硬件成本相对较低,在未来车用雷达逐步应用新技术且开始大规模量产以后,两者之间的成本差距有望逐渐缩小。

值得关注的是,未来依靠雷达的高级别自动驾驶不会只用单一的传感器来实现,多传感器融合已经成为业内共识和发展趋势,激光雷达、毫米波雷达、超声波雷达、摄像头等设备会根据需要被搭配使用,这样的组合也可以充分发挥不同传感器技术之间的互补性,进一步提升探测效率与行车安全。

传感器“扼住”自动驾驶前进道路?

然而,细看自动驾驶方式,我们发现无论是中国还是美国,目前在路上行驶的自动驾驶仍然局限于L2级别,即仅实现自动跟车与自动变道等辅助驾驶功能,距离真正的“双手离开方向盘”自动驾驶还有相当大的差距。

自动驾驶技术,卡在哪里了?在最近举办的上海传感器大会上,钟志华院士就自动驾驶与传感器技术发表演讲,分享了未来自动驾驶技术的发展方向。其中车路协同与单车智能两条发展路线被钟院士着重提及。这两类方向,虽然目的都是实现自动驾驶,但在传感器与算法的发展方向上却截然不同。

单车智能

车辆自己决定怎么走

单车智能其实很好理解,我们目前的自动驾驶发展方向主要就是单车智能,也就是在自动驾驶车辆上搭载大量高精度传感器,再配合高算力芯片,自行分析路况,制定行车决策。

单车智能其实就是模拟传统驾驶方式。在传统驾驶中,司机通过听与看获取外界信息,然后作出相应的驾驶动作。例如看到红灯会停车,看到路人横穿马路会减速避让等。为了模拟人类对于外界信息的收集能力,无人驾驶工程师不得不在车辆上装载大量传感器,而这些传感器与它们背后的处理芯片,目前是无人驾驶发展的关键。

单车智能路线的传感器,既有几乎百分百车辆覆盖的摄像头(视觉传感),也有适用复杂环境的毫米波雷达与激光雷达,适用夜间环境的红外传感器,以及辅助倒车泊车的超声波雷达或微波雷达等。总的来说,单车智能大致能分成“视觉派”与“雷达派”两种。

“视觉派”即是纯视觉方案,利用高清摄像头模拟人眼进行道路识别。目前特斯拉、极氪、百度Apollo还坚持使用纯视觉方案自动驾驶。这种方式需要在车辆周围布置大量摄像头来感知周边环境,尽管摄像头用量较大,但由于摄像头拥有大量成熟的技术与算法方案支持,与雷达方案相比反而成本更低,较容易实现大部分ADAS功能。纯视觉方案在工作时对算力需求较高,且并不擅长测距,在复杂与恶劣环境下容易失效。纯视觉方案受限于其物理特性,很难做到高级别自动驾驶。

“雷达派”则在视觉方案的加装了毫米波雷达或激光雷达。毫米波雷达是使用毫米波段的探测雷达,它利用高频电路产生特定频率的电磁波,通过天线发送出去,然后接收从目标返回来的电磁波,来判断外界目标的各个参数,例如大小、距离、速度等。激光雷达则是发射激光脉冲点阵,通过探测器接收回波来判断外界物体的特征。雷达方案相比纯视觉方案,能够规避可见光波段的种种缺陷,例如无法直接判断景深、容易受环境影响、低分辨率误判等。

不过目前雷达方案成本相比视觉方案要高不少,尤其是激光雷达,虽然拥有优秀的测距性能与精确的物块分析能力,但成本也是最高的。此外,较低成本的雷达测量范围有限,往往需要使用多个传感器来覆盖整个车辆周围的环境,这进一步增加了成本和复杂性。此前马斯克就曾扬言特斯拉不会搭载激光雷达,因为彼时一台雷达价格就接近10万美元。

车路协同

怎么走,道路说

钟院士的演讲有一点很有意思,他将未来的城市比喻成一个大车间,无人车辆在统一的规划下有序行驶。车路协同(V2X)就与这种“大车间”的运作模式十分相似。目前上海洋山港已经建成完备的无人港口。据官方资料介绍,洋山港的车路协同技术引入AI人工智能控制、5G、V2X通讯、北斗导航等技术,在全球范围内实现特定场景下的L4级别无人驾驶。所以,理论上,我们把洋山港放大几百倍,让它的面积大到能覆盖整个城市不就行了吗?

其实,当特定的无人驾驶区域超越了所谓的“车间”大小,自驾难度就会指数级上升。其中最大的变化就是引入行人、非机动车、野生动物等不稳定因素。此外,城市中的堵车、乱停车、交通事故等突发情况也会对自动驾驶产生影响。

在车路协同的“车”中,除了通信外,也需要很多传感器相互配合工作。目前车路协同技术路径下可能会用到以下传感器:5G传感器(基带):用于与云计算相连,接收智慧城市系统信号;激光雷达、毫米波雷达:用于检测和跟踪车辆、行人和其他障碍物;摄像头:用于识别和跟踪车辆、行人和道路标志等;GPS定位传感器:用于确定车辆的位置和方向;车辆识别传感器:用于云端识别车辆类型和车牌号码等信息;压力传感器:用于检测道路表面状态,例如温度和湿度等;磁力传感器:用于监测道路交通流量。车路协同使用的传感器种类相比单车智能更多,其目的是收集和分析交通、车辆和环境等方面的数据,以实现智能化交通控制和车辆管理。

但车路协同是一项涉及多方面的技术,尤其在数据传输与数据收集传感器上需要更多投入。

通信传输

为了实现实时、可靠和安全的通信,需要使用高速、低延迟、高可靠性和安全性的通信技术。5G网络提供了更高的带宽和更低的延迟,这使得车辆和基础设施之间的通信更加可靠和快速。5G网络还可以支持更多的设备连接,这对于车路协同系统来说非常重要,因为它需要大量的设备连接,例如车辆、道路设施和传感器等。不过现有的5G网络还需要进一步解决在高密度交通环境中的应用以及通信带宽上限等问题。

数据收集

车路协同需要收集和处理大量的数据,包括车辆位置、速度、方向、道路状况、天气状况等,用来对交通状况进行预测和优化。因此,高效、耐用且精确的多维度数据车辆传感器也是车路协同的关键。目前北京雄安新区已经开始建设布满传感器的自动驾驶“专用路”,未来随着基础设施的铺设,车路协同也将更快实现。

单车智能方案起步较早,但受限于传感器价格目前发展较慢。车路协同技术虽然对单车高质量传感器需求较少,但尚处于市场初级阶段,在技术上还存在诸多难点。此外,在商业落地方面,车路协同还面临着投资积极性不足、后期运营困难的问题。例如传感器过几年就要更新,这将消耗大量设备采购资金与人工成本。

传感器融合带来的全新挑战

感知元器件融合带来的挑战成为行业近几年讨论比较多的话题。以摄像头为例,其传输速率从最初的1M发展到后来的2.5M、3M,再到现在的8M;此外,近年来上车的激光雷达,点云数据也是越来越多。这些都会导致数据传输量的增加,同时对传输速率提出更高要求,因此出现了整车线束成本增加的倾向。行业对整车电子电气架构由分布式向集中式演进已形成共识,但如何分步骤实现,集中又将达到何种程度,大家的认识不同,还没有一致的看法。

自动驾驶传感器的数量增多以及单传感器数据量增多是大势所趋,但同时数据传输也带来严峻的挑战。我们可以通过硬件计算的架构设计,降低传输热点的存在,以缓解传输瓶颈;同时,还尝试通过计算前置、信息压缩等方式来降低传输信息量。

随着自动驾驶向L4演进,车辆对于传感器的需求不断提升。首先必须强调稳定性和成本,抛开这两点,就不是有现实意义的自动驾驶。在此基础上,更高等级自动驾驶需要激光雷达,以提升探测距离和分辨率。探测距离越远,探测分辨率越高,提供的精确3D位置信息范围更大,信息密度更高,对感知多传感器融合的帮助也就越大。

此外,更高等级自动驾驶也要求摄像头的分辨率不断提高,以此改善视距、小物体识别和语义级别感知能力。对于毫米波雷达而言,除了提供4D毫米波信息之外,也需要更高的信息密度,更稠密的点云。

“更高级别自动驾驶,对传感器的探测距离、分辨率及探测稳定性都提出了越来越高的要求。以激光雷达为例,要满足L3及以上级别自动驾驶,至少需要满足250米的标准探测距离。”邓常敏强调。

令行业感到乐观的是,国内市场对于自动驾驶的接受度较高,很多用户即使并非高频使用,但还是希望把自动驾驶功能作为车辆配置。也因为这样的高接受度,带动了自动驾驶产业市场整体规模不断扩大,技术和产品成本的下降趋势比较明显的。

从感知融合的角度讲,传感器会强化感知功能,弱化计算功能。无论激光雷达、毫米波雷达还是摄像头,感知在前端融合,计算放到域控制器或中央计算单元上是一个比较明确的方向。当然这也带来对数据传输实时性、安全性及抗干扰性等的挑战。

文章来源: 于见专栏,感知芯视界,中国汽车报

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...