“室温超导”刷屏,离实际应用多远?国内超导研究进展如何?

新材料君 2023-03-10
3335 字丨阅读本文需 8 分钟

这几天,在室温条件下实现超导的消息引发全球关注和热议。事情的起源是,3月8日,《自然》杂志刊登了美国罗彻斯特大学迪亚斯团队的一篇论文,讲的是该团队合成了一种“镥-氢-氮”的三元化合物,能在近常压和室温条件下实现超导。2天的时间里,围绕这一成果的消息和解读在各大媒体和社交平台实现刷屏式“讨论”。

此次研究有何特别之处?

3月9日,中国科学院物理研究所、超导国家重点实验室研究员罗会仟分析了此项研究的突破性进展等。

罗会仟认为,该团队此次研究的突破性在于,其材料不仅能够在21℃的室温条件下实现——突破了传统超导材料需要极低温的温度条件(接近“绝对零度”——零下273.15℃),而且还突破了压强条件。“他这个文章为什么会受到关注?主要是他的(实验结果)压力变低了。以前(的材料需要)有200多万个大气压。你看现在1万个大气压的时候,它的超导温度已经是最高达到了20℃,确切来说,它是21℃,那么就已经可以认为是室温超导。”

据悉,该材料只需要大约10kbar(即1GPa)压力,约是1万个标准大气压(1个约为101.325kPa)。如果要投入实际应用,这个数字也不小,不过与过去需要“200多万个大气压”相比,已经是突破性进展了。研究者迪亚斯宣称,他们生产了数百个材料样本,压力降低到约1GPa后,他们仍能够观察到数十个样本有超导性。

罗会仟指出,由于该团队过去两年受到很多质疑,因此他们在这篇文章内容也做出了改变:增加了数据,以进行回应。“过去两年,他们其实受到质疑非常多,所以他们要这个文章能顺利发表出来,那就必须能够回应,能经得住这些质疑。”

罗会仟说道,“这一次跟以前的不一样,该团队给出了一个比热的数据,这个时候这么大的压力下,有个很清楚的比热的跳变,就跟超导现象比较接近了。”

他认为,如果该团队在论文里展现这个数据是正确的,那么质疑可能会减少。“如果这些数据都是正确的话,基本上能说明这个东西是一个超导的现象。”

超导是什么?有哪些应用?

超导是导体在某一温度下,电阻为零的状态。1911年,荷兰物理学家昂内斯发现,当温度降低至约-268℃时,汞的电阻降为了0。超导的大门由此被打开。汞成为人类发现的第一个超导体。

1933年,德国物理学家迈斯纳在对进入超导态的锡或铅金属球做磁场分布测量时发现,当材料进入超导态后,其内部的磁场会迅速被排出体外,磁场只在超导体外部存在,超导体展现出完全抗磁性。这就意味着,除了零电阻的特性,超导体还有完全抗磁性的特征。

此后100多年的时间里,数以千计的超导材料不断被发现,包括单质金属、合金、过渡金属硫族化物/磷族化物等。但这些材料实现超导的前提条件是极冷的温度或超高压力,这就意味着这些实验材料无法用于长期、常规的应用。所以,寻找近环境条件下(室温、常压)的超导材料一直是超导领域的梦想。

尽管超导材料有成千上万种,但真正实用化的超导材料并不多,主要分为低温超导、高温超导。

早期,超导体被广泛使用在强磁体、超导量子计算机、高灵敏探测器等诸多重要领域。如今,超导已经走进我们的生活,如高温超导滤波器已被应用于手机和卫星通讯,并明显改善了通信质量;超导量子干涉器件(SQUID)装备在医疗设备上使用,则加强了对人体心脑探测检查的精确度和灵敏度;世界上首个超导示范变电站也已在我国投入电网使用……

不仅如此,超导技术的应用范围十分广阔,在输电、电机、交通运输、航天、微电子、电子计算机、通信、核物理、新能源、生物工程、医疗以及军事装备等领域,都已展现出灿烂夺目的前景。

学界怎么看?

中科院物理所研究员中科院物理所研究员罗会仟撰文表示,对物理学家而言,室温是有明确定义的,即300K,约相当于27℃。该论文的关键结果是碳-硫-氢(C-S-H)三元体系在267GPa左右可以实现288K左右的超导电性,对应温度为15℃。超导材料的Tc(临界温度),被首次突破到0℃以上,尽管距离室温300K还有一步之遥,论文的题目已经大大方方用了“室温超导”字样。

上海市高温超导重点实验室主任、上海大学教授蔡传兵认为,迪亚斯这次的研究成果有两个亮点,第一是把原来所需的极端高压267GPa变成了一个相对低的压力1GPa。第二个亮点是,这次迪亚斯采用了一个新的元素组合,引入了稀土金属——镥元素(Lu,Lutetium),合成了三元氢化物(N-Lu-H),和他以前采用的碳硫氢化物不同。这次迪亚斯展示出的研究成果有一定可靠性,但室温超导所需的1GPa压力仍属于高压范畴,距离实际应用仍非常遥远。

上海交大教授洪智勇认为,迪亚斯教授最新的实验结果,即便数据验证为真实的,也不可能做成实用化导线。“虽然最新的实验把超高压强从200多万个大气压降到了1万个大气压,但在地表大范围、长距离地实现高温超导(-196℃以上),比实现1万倍大气压更容易、更便宜。”

中科院物理所在微信公众号文章中表示,从文章来看,这项工作无疑是突破性的,相关证据也很充足,如果能重复出来,搞不好未来能发诺奖。但物理学的研究终究不是一家之言,任何科学研究都应该经得起验证,这个也不例外,这项工作势必要经过行业内各个研究组的重复,如果经过多次重复之后,确定该结果的正确性,那将是划时代的工作。我们今年诺奖预测也就有底气了。

南京大学物理学教授刘俊明表示,目前,高压下超导温度提高的物理图像是很清楚的,因为BCS理论就在那里。只要其他课题组能够重复,就是巨大成果。这篇文章去年4月份就送审《自然》了,能够发表出来,说明作者、编辑和审稿人都有一定的信心。毕竟,Dias博士已经吃过一次亏,这一次不应该还是故态重来。但曾经质疑过Ranga Dias团队成果的Hirsch教授,也是国际知名的氢化物超导电性专家。他的质疑应该是定量意义上的,似乎也有可信度。且看这一次Dias和Hirsch谁对谁错。无论如何,这一事件应该会给物理学史添上不错的一笔,一定意义上呈现了自然科学的魅力所在。

伊利诺伊大学芝加哥分校的材料化学家罗素·赫姆利说:“这是一项出色的研究。就超导性的证据而言,所提供的数据是非常有力的。”

能投入应用吗?

“现在他们团队所面临的,无疑是如何佐证该成果的真实性和可复制性。”周迪分析称。对于这次新材料是否能够通过《Nature》审核的问题,迪亚斯也向媒体做出了公开回应,称这次非常有信心。

迪亚斯表示,“首先,这项工作在罗彻斯特大学实验室和其他实验室都重复了好几次,并有第三方观察和独立的工作验证;其次,论文已经经过了同行审议,并符合该出版物的严格标准;最后,我们还重新提交了2020年的论文供《Nature》杂志再次审议,因为《Nature》杂志编辑当时提出的问题对实验数据的质量或我们得出的结论没有影响。我们也对2020年当时工作和实验的质量充满信心”。

尽管成果受到质疑,但资本市场已经率先掀起了一轮狂欢,相关概念股走势活跃。中航证券表示,高温超导乃至室温超导研究进展一旦取得突破,其应用难度和成本将极大降低,对人类文明的影响深远程度或将不亚于半导体材料。周迪也提到,超导体在常规条件下工作,可能预示着一个高效率机器、超灵敏仪器和革命性电子产品的新时代即将到来。

但在罗会仟看来,现在期待室温超导会出现颠覆性的应用,其实还为时尚早。一种新材料从出现到真正商业化,是一个非常遥远的事情,目前已经有1万多种超导材料了,但在应用方面最多的还是100多年前发现的铌钛合金。

据了解,铌钛合金超导体是超导工业的“先导材料”,其成本远低于其他超导材料,同时还具有如屈伏强度与钢材接近等优点,保证了铌钛超导合金的应用优势。

“对于新的材料,我们可能连它其他的基本性质都还没能搞清楚,根本就谈不上产业化的应用。从现实意义上来说,这一发现如果被确证,只是有科研的借鉴价值,告诉我们有希望找到这样一种材料。”罗会仟总结称。

而人们之所以对此呈现出了巨大的关注,也是因为过往要实现这一目标,通常需要几百万个大气压,全世界可能都只有个位数的团队能够做到这一点。

但这一文章中提到的条件只需要1万个大气压,对很多研究组来说就是非常容易实现的了,如果真的能在这么低的压力下做到这么高温度的操作,整个研究也会变得非常简单,人们自然会期待能否迅速验证这一实验的真实性。

国内超导研究进展如何?

罗会仟在接受媒体采访时表示,目前国内超导领域的研究,其中重要的一方面是对于新超导材料的探索,最早可追溯至1960-1970年代。

1980年代,在瑞士科学家发现铜氧化物高温超导现象后,在中科院物理所赵忠贤老师为代表的团队带领下,很快发现了90 K(-183摄氏度)以上铜氧化物高温超导现象。钇钡铜氧化合物的转变温度达到了92 K,打破了液氮77 K(-196摄氏度)的温度堡垒。

2008年3月,中科大陈仙辉研究组和中科院物理所王楠林研究组同时在铁基中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,证明了铁基超导体是高温超导体。紧接着,中国科学家团队不仅率先使转变温度突破了50K,并发现了一系列50K以上的超导体,也创造了55K的铁基超导体转变温度纪录,被国际物理学界公认为第二个高温超导家族。

罗会仟表示,中国在超导的一些研究方向上,目前已经做到了世界领先水平。赵忠贤院士带领团队将铁基超导体的临界温度提高到了55K,推动中国高温超导研究走在世界最前沿。

文章来源: ​光明网,红星新闻,快消八谈

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:新材料君
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...