我国科学家开发出血管里的全能医生:都能做什么?照进现实还有多远?

绕波特 2023-03-20
2878 字丨阅读本文需 7 分钟

3月13日,从中国科学院深圳先进技术研究院获悉,该院医药所纳米医疗与技术研究中心蔡林涛研究员团队开发了一款“双引擎”、自适应的酵母微纳生物机器人(TBY-robot),通过生物酶与巨噬细胞“引擎”的切换,它能穿透人体多重生理屏障,实现将药物精准递送到远程炎症病灶。

微纳生物机器人是能够将周围环境中的化学能或物理刺激转化为自身动能的小型化智能化生物装置。其具有在现有医疗器械难以企及的微观领域进行自驱运动和导航的能力,有望实现疾病的精准诊疗。

微纳米机器人是一种介于微纳米尺度的智能动力装置,能将外部环境能量转化为自身运动动能,在靶向药物输送、精准医疗、生物传感和环境修复等领域有广阔的应用前景。其最大优势在于可将众多外场能量(磁场、超声波、光等)转换为自身驱动力,并且凭借其可控性和可修饰性等优势,在微观世界自由穿梭。

1、血管里的全能“医生”

人送外号“微纳小医生”的微纳米机器人在生物医学领域,能够做什么呢?

首先是通过对微纳米机器人的可控操作,可以使其携带药物或者其它载体到达人体病变部位,通过识别和感知病变部位的pH值、温度、化学成分的变化,在病变部位响应性释放药物或其他载体,可加快局部反应以达到高效、精确、靶向治疗的目的。

在临床上,可借助医学影像系统定位病变部位,让微纳米机器人沿着预设的路径运动,最终将其“导航”至靶向位置,进行疾病治疗。

可以说,“微纳小医生”的发展为无创或微创诊断和治疗绘制了美丽的蓝图,也大大减少了传统手术给患者带来的痛苦。同时,不同激励外场的微纳米机器人有着不同的应用场合。

在生物技术领域的舞台上,近两年,因为全球新冠大流行,最“风光无两”的当属mRNA技术:辉瑞/ BioNTech与莫德纳两款mRNA疫苗的成功,将这一新技术一下子推到聚光灯下,上千亿美元的收入,使其成为制药史上最赚钱的“黑马”。

人类发现mRNA(信使核糖核酸)已经超过60年,不过,受mRNA在体内快速降解等关键问题的阻碍,该技术进展缓慢。进入21世纪,脂质纳米粒子(LNP)作为载体的递送技术,一定程度上解决了mRNA在体内易降解和递送效率低等问题,使mRNA技术快速发展并进入临床应用。

不过,与我们通常所设想的“机器人”不一样,纳米机器人不是一些带着电池、芯片等各种电子器件并且拥有一副金属盔甲的样子。今天,即便最精密的机械加工技术,也还不能制造出在体内游动的传统机器人。纳米机器人是通过物理、化学的方法合成、制备出具有特殊结构和功能的分子和微纳米材料。

哈佛大学医学院助理教授、哈佛大学附属布莱根妇女医院杰出讲席教授陶伟是生物医学工程方向的科学家,他的研究内容主要聚焦在药物的智能递送系统上,“纳米机器人”正是很好的运输工具。临床上其实有很多有效的药物,却不能很好地治疗疾病,其中一个原因是药物不能准确地到达病灶部位并针对性地释放药物,造成毒副作用大、治疗效果差等问题。

2、拥有多个帮手的微纳米机器人

目前微纳米机器人的帮手有很多,拥有十分丰富的外场激励源,如超声场、电场、磁场、光等。而且设计微纳米机器人的材料也十分丰富。随着合成技术的不断发展,作为新型高分子材料的水凝胶近年来成为了微纳米机器人的应用对象。

因此,水凝胶基微纳米机器人也得到快速发展,并凭借其优秀的物理化学特性,已经逐步成为微纳米机器人研究领域的重要方向。

水凝胶基微纳米机器人,优势有以下几点:

1)具有良好的生物相容性和生物降解性:大多数水凝材料(如明胶、胶原蛋白等水凝胶)在进入人体进行治疗和诊断时不会带来副作用,并且可以在完成任务后自行降解;

2)水凝胶自身拥有类似于软组织的性质:它的三维网络结构不仅可以存储大量水分,还可以装载药物分子、纳米颗粒甚至细胞;

3)容易加工:可以通过3D打印、4D打印或者其他技术来制备微纳米机器人。

3、走向临床前,还有漫长旅程

理论上来说,纳米机器人可以通过静脉注射或口服摄入,在人体内开始一段旅程,消除疾病源头后,安全地自我降解。

不过,中国科学院分子纳米结构与纳米技术重点实验室研究人员张莹等人在去年年底发表的一篇综述文章中写道,为了满足生物医学应用的实际需求,纳米机器人在生物安全性、驱动、体内导航等诸多方面仍然存在诸多挑战。

以安全性为例,张莹等人指出,纳米机器人进入体内对生物体造成的可能影响,以及完成任务后如何从体内消除是值得关注的问题。选择具有良好生物相容性、生物降解性以及可靠安全的材料是关键。

在体内导航方面,目前主流的设计是通过成像技术来精确定位与追踪纳米机器人在体内的运动。不过,贺强指出,如今最先进的体内成像系统还无法“看见”纳米这个级别的物体,即无法“注视”到单个的纳米机器人,只能通过追踪纳米机器人集群的方式实时定位和路径规划,而且成像的速度也赶不上纳米粒子在血液中运动的速度。这方面的突破在未来10年左右是有可能实现的。

此外,纳米机器人依然有很多尚未解决的困难。比如,陶伟指出,人体环境比小动物的体内环境更为复杂,血液里各种各样的蛋白可能会吸附到纳米机器人上,“遮蔽”了一些原来的表面靶向或智能设计,使得它们在人体中真正的递送效率还不够高。另一个挑战是,免疫系统可能会在它们卸下装载的药物之前,将纳米机器人识别为要消灭的威胁,为解决这个问题,科学家也在研究不会在我们体内引发免疫反应的材料。

现在的“纳米机器人”有发动机和燃料,但还没有“大脑”,人们不能通过芯片和编程来使其智能化,因此还是非常原始的机器人,或者将其称为“纳米机器人”更加贴切。

中国微米纳米技术学会在2020年发表的科普文章中写道,目前研发的纳米机器人属于第一代,是生物系统和机械系统的有机结合体;第二代纳米机器人是直接由原子或分子装配成的具有特定功能的纳米装置,能够执行复杂的纳米级别的任务;第三代纳米机器人将包含有强人工智能和纳米计算机,是一种可以进行人机对话的智能装置。

随着微纳米机器人领域的快速进展,其可能引发的伦理问题虽然尚早,但也值得关注。2020年,一篇发表在“英国皇家化学学会(RSC)”网站上的文章《纳米机器人的环境和健康风险》指出,这项前沿技术可能的潜在危害有两方面:一是纳米机器人使用有害身体的材料和紫外线,二是推进力丧失或者靶向失控。另外还需探讨,现行法规框架如何适应纳米机器人的研发进展。

正如人们对人工智能的担忧一样,纳米机器人也可能目标失控,从消灭疾病转为破坏我们的身体。有自媒体还表达了对纳米机器人的增长速度超出控制、自我复制的担忧。现在这种担心还完全没有必要。因为纳米机器人的制备材料大多数是一些无生命的无机或有机材料,即便是通过DNA组装的机器人,因为结构设计以及缺乏酶等生存环境,也不能自我复制。

为何纳米机器人还未推进到临床试验阶段,贺强说,很现实的原因是,从细胞实验、动物实验走向临床试验,还有大量的研发工作要完成,成本很高、时间很长。

国外已经有一些初创公司开始孵化这个领域,比如,2017年,一家总部位于加州的初创公司BionautLabs成立,该公司研发的微型机器人可以被送入人类大脑深处,以治疗其他方法无法医治的疾病。今年4月,据《每日邮报》报道,公司计划在两年内针对其微型可注射机器人进行首次人体临床试验。

在新冠疫情这一影响深远的公共卫生事件发生后,陶伟说,随着mRNA疫苗的快速获批与广泛使用,越来越多人开始关注纳米粒子及药物递送技术这一领域,很多科学基金和资本开始积极投入进来。”陶伟形容,“这种感觉就好比,原来这一领域是在乡间小路上慢慢探索,一下子驶入高速公路。”

今年3月,一篇发表在《自然》杂志上,题为《微型医疗机器人正从科幻小说中跳出来》的文章中写道,显然,要把机器人空降到人体内深处难以触及的肿瘤部位,还有很长的路要走。但是这个领域动物活体实验的兴起和越来越多临床医生的参与,表明微型机器人可能正在启航,踏上通往临床的漫长旅程。

文章来源: 机器人大讲堂,科技日报,科学中国人scichi,中国新闻周刊

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:绕波特
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...