快而精准!可检测真皮间质液中的生物标志物,传感器技术又突破了

传感器视界 2023-05-05
1992 字丨阅读本文需 5 分钟

实时、原位、高精度地检测,在各个科学领域特别是在医学和生物学领域非常重要。当前,随着物联网、大数据和大健康从概念走向实施,生物传感以其合适的技术特色,面临新的发展机遇。生物传感至今已经发展了50年,在生命科学研究、疾病诊断与护理、环境监测、生物过程控制中发挥了重要作用。

基于等离子体的红外传感器

这种传感器装置属于事件驱动型传感器。一般它是休眠的,但总是处于警惕状态,只有在监测到特定信号(感兴趣信号)时才会启动。而且只有启动时,它才会耗能。美国东北大学的助理教授Matteo Rinaldi解释,当红外光照射到该装置时,就会被集成型超薄等离子体红外光吸收器吸收,并转化成热量。这样就会提高敏感元件的温度,导致其由于热膨胀而弯曲并接触到一起,进而实现探测功能。

超薄等离子体红外光吸收器是由 3 种材料的堆积结构形成:上层是金纳米片(50 nm),中间是介质层(100 nm),下层是铂纳米片(100 nm)。该纳米结构吸收特定波长的电磁波后,高度局域的间隙等离子体被激发。这些局域等离子体可以有效地把光限制在较窄的介质间隙,进而导致吸收器又高又快的温度增长。

上述金纳米片被作为微型的机械转换开关,从监测信号中获取能量,等离子体在机械转换开关的光吸收过程中起着关键作用。等离子体是指在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的电波。正是由于这种特性,在微型结构中才能实现强烈且有选择性的光吸收。Rinaldi表示,“也正是由于这种特殊的选择性吸收,我们的装置才能被预设定的较窄波长范围内的光触发。此外,基于可设定的光吸收特性,同一个芯片上的多个开关可以被不同波长的光触发,进而探测并识别不同的光谱信号。”

由于可以探测出具有特定强度和波长的红外辐射,Rinaldi团队将其研发的传感器称作“红外数字化传感器”。它在探测并辨别红外辐射后,将其转变成启动信号,而且在待机时不消耗任何能量。这款传感器可以用于探测侵入的红外源,比如人体、燃料动力汽车等。它还可以用于检测热源, 进而触发警报。如果与激光光源结合起来,该技术还可用于远程控制和通信。在所有这些应用场合中,该传感器都可用作零动力触发器去启动下一阶段的电子设备。

基于空心微针的等离子体传感器

疾病的诊断和监测常常通过检测血液、尿液、唾液和其它体液中的生物标志物来实现。特别是包围着体内细胞和组织的间质液(ISF),是一种丰富的生物标志物来源。然而,收集间质液的困难限制了其在临床和研究中的应用。

微针是一种具有微米级特征尺寸的装置,能够物理破坏角质层(SC),即皮肤的外层。微针的长度为数百微米,尖端锋利,通常以阵列形式组装在贴片上,并且,组装后的微针贴片可以轻松贴在皮肤上。不同类型的微针,如实心微针、溶胀微针和空心微针都可以用作传感器。其中,空心微针(HMNs)具有内置腔体,可以作为有效的生物流体收集器,在真皮层和皮肤外层之间的界面上创建透皮流体路径。此外,空心微针通常与吸液纸集成,集成后的装置能够收集间质液,以用于后续的化学分析。

然而,通过空心微针装置收集的间质液通常需要在额外的独立装置中进行分析,从而需要引入额外的间质液转移步骤,即将纸基微针贴片在萃取介质中进行孵育,并通过离心从中提取分析物,而后再用适当的分析方法对提取出的分析物进行检测。总而言之,这些装置需要将收集到的间质液从微针管腔转移到分析物检测器。这通常使得微针装置只能以较长的时间提取少量可使用的间质液,从而进一步导致传感器响应的缓慢。为了克服以上微针技术的局限性,意大利国家研究委员会应用科学和智能系统研究所(ISASI)的研究人员提出了一种空心微针贴片装置,该装置的微针空腔中填充了含有金纳米颗粒(AuNPs)的高度溶胀聚乙二醇二丙烯酸酯(PEGDA)3D网络结构,从而构建了一种等离子体传感器。

该空心微针贴片通过光刻方法制造,并利用了PEGDA在低分子量下的光交联特性。PEGDA是一种具有生物相容性的无毒聚合物。将金纳米颗粒包裹在高分子量PEGDA中,然后插入到空心微针腔中。随后,利用高分子量PEGDA的高溶胀特性提取间质液。该技术避免了对收集的间质液进行独立分析,并允许直接从微针装置检测感兴趣的靶分子。

最后,研究人员通过使用由封口膜和琼脂(分别用于模拟角质层和真皮层)制成的皮肤模型,测试了所提出的装置从皮肤中收集和捕获生物素靶分子的能力。测试结果表明,无论是利用无标记的LSPR传感机制还是基于荧光的传感机制,作为靶标的生物素,都可以被成功地检索和光学检测,从而证明了本文所提出平台的功能有效性。

创新和挑战并存,未来可期

生物传感器市场化,必须可以做到简单、低成本、可大规模推广和通用,这样可以替代传统的、昂贵的、费力的医 院或实验室装置,用于各种场合的监测。此外,通过利用不同形状的纳米颗粒(例如纳米棱柱、纳米三角形和/或纳米星形)以及其尖端形状现象,或者通过增加换能器体积从而增加收集的间质液体积,可以进一步提升小分子的无标记检测性能。由于人口老龄化以及专业人员和医 院床位的缺乏,这类传感器正受到越来越多的关注。因此,需求变得越来越迫切。

得益于生命科学、物理学、化学、材料科学和信息技术等多个学科交叉融合。如今,要满足市场发展的需求,生物传感研究还存在一系列挑战。新时期,合成生物学、人工智能、纳米技术、大数据等新兴学科领域的发展与融合,将可能产生新思想、新原理和新方法,促进生物传感技术难题的解决,并提升生物传感性能、赋予其新的功能和特性。

文章来源: 面包芯语,电子发烧友

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:传感器视界
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...