人族火箭成功发射背后的主力军,GRCop的铜基合金系列有何奥秘?

金属狂想曲 2023-05-08
2229 字丨阅读本文需 6 分钟

2023年3月,由3D打印部件制成的测试火箭——Relativity Space的人族Terran 1火箭从佛罗里达州卡纳维拉尔角发射升空,照亮了夜空。作为增材制造的一种形式,3D打印是增强能力和降低成本的关键技术。而GRCop的铜基合金系列帮助Terran 1火箭发动机燃烧室发挥重要作用,其高温接近6,000华氏度。那么这个GRCop的铜基合金系列身上有什么奥秘呢?

高强度、高导热性、高抗蠕变

Terran 1首飞的意义在于证明了Relativity Space的颠覆性创新价值:

1.-改变了供应链。以往火箭制造很长的供应链,将供应商的需求降为全部自己3D打印制造几乎所有零件。零件数量减少100倍;

2.-改变了研发,研发速度提升10倍;

3.-人工智能用于制造,Relativity的3D打印本质是人工智能算法驱动的智能制造。

4.而在这一切的颠覆性创新价值背后,还离不开NASA的技术支持:在克利夫兰的美国宇航局NASA格伦研究中心创建了这个被称为GRCop的铜基合金系列,旨在用于高性能火箭发动机的燃烧室。

GRCop铜基合金系列

在美国宇航局位于克利夫兰的格伦研究中心根据该机构的"改变游戏规则的发展计划"创建的这个铜基合金系列被称为格伦研究铜,或GRCop,被设计用于高性能火箭发动机的燃烧室中。

作为铜、铬和铌的组合,GRCop被优化为高强度、高导热性、高抗蠕变性(在高温应用中允许更多的应力和应变)和良好的低循环疲劳(防止材料失效),超过900华氏度。它们能容忍的温度比传统铜合金高40%,这导致了更高的性能组件和可重复使用性。

GRCop系列铜基合金的诞生

在20世纪80年代末,美国宇航局希望开发一种用于在低地球轨道上操纵航天器的发动机,并能经受多次发射。火箭发动机在设计和运行环境方面遇到了复杂的挑战,包括多次启动和关闭,对关键部件造成循环的磨损。

在航天飞机时代,大卫-埃利斯博士作为美国宇航局支持的研究生开发了GRCop系列合金。在他的职业生涯中,他继续使这些合金及其应用更加成熟。

"当时,航天飞机主发动机燃烧室衬里通常在一到五次任务后被更换,"埃利斯解释说。"我们的研究能够表明,GRCop-84将很容易满足100次维修服务和500次发动机寿命的目标。"

在多年的合金开发过程中,埃利斯和他的团队与多个项目和计划合作,如NASA的快速分析和制造推进技术(RAMPT),以推进不同版本的GRCop合金。最近的迭代,命名为GRCop-42,使用各种增材制造方法,为火箭发动机制造单件和多材料燃烧室和推力室组件。这些工艺提高了性能,同时大大降低了推力室组件的重量和成本。

位于阿拉巴马州亨茨维尔的美国宇航局马歇尔太空飞行中心的首席工程师Paul Gradl说:"像RAMPT这样的开发项目,可以推进新的合金和工艺,供商业空间、工业和学术界使用。NASA承担了开发风险,并从早期的材料和工艺概念到认证的过程中使之成熟。这次将GRCop-42合金注入商业空间是另一个很好的例子,说明美国国家航空航天局领导的创新是如何推进行业能力并为美国不断增长的太空经济做出贡献的。"

与增材制造技术的完美结合

商业航天进入发展开车道,将极大的刺激金属3D打印的发展,2022年增材制造市场发生显著变化,航天军工的需求强势崛起,导致包括对选区熔融金属3D打印、电弧熔丝增材制造技术、激光沉积送粉成形、复合材料增材制造技术的需求都发生了急剧的增长需求。根据AMPower 2023全球工业增材制造市场报告,2022年选区熔融金属3D打印的一个直观的发展趋势是超过600mm加工尺寸的大型设备需求上升,其中航空航天领域购买的金属3D打印设备单台均价在100万欧元以上,一方面满足大尺寸加工零件需求,一方面满足小批量零件的量产制造需求。另外—个特征是此前DED定向能量沉积3D打印技术普遍被用来作为零件修复的一项技术,而过去一年的发展趋势是这项技术被越来越多的用于大尺寸零件的制造需求。

NASA发现GRCop合金与最新的增材制造方法配合得很好。激光粉末床熔融和定向能量沉积等3D打印制造工艺是目前可用于为许多航空航天应用制造GRCop 铜合金零部件的技术,例如用于Terran 1人族火箭发动机的制造。

在激光粉末床熔融3D打印过程中,3D打印设备将一层薄薄的粉末铺展并根据CAD建模模型选择性的熔化金属粉末并凝固成金属固体,重复数干次以形成一个完整的部件。这种层层凝固材料的方式可以制造出与锻造金属相当的强度。这种方法的优点是可以创建精细的零件,例如用于燃烧室冷却的内流道、复杂喷嘴和带冷却通道的喷管等。

与激光粉末床熔合相比,DED定向能量沉积工艺可生产更大的形状和组件,但可实现的细节相对较少,并且通过DED来加工铜金属材料是具有挑战的。加州大学圣地亚哥分校的研究人员在其论文《Directed energy deposition of pure copper using blue laser》中展示了具有明确几何形状的块状Cu部件,该部件通过使用蓝色激光的“送粉"-定向能量沉积(DED)工艺构建。生产了体积为1000立方毫米的接近全密度(高达99.6%)的部件,这是迄今为止在激光增材制造中报道的最致密的纯铜部件,但与使用近红外激光构建的类似体积部件相比,其能量密度要低得多。

NASA制造火箭推力室的燃烧室所用的铜合金GRCop-42作为具有更高导电性的高强度合金而得到了应用,铜合金由于其高导热性而被期望用于腔室衬里,这带来高效的壁冷却以将腔室热壁保持在高强度温度区域中。NASA开发了生产封闭壁铜合金衬里的能力,使复合材料成为腔室护套作为可行且理想的选择。

根据一项可偿还的《空间法》协议,Relativity Space公司还为NASA的GRCop-42 铜合金开发了专有打印技术,GRCop-42 是NASA 和私人太空飞行公司用于火箭推力室组件的首选铜合金。这项新技术结合了专有参数集和热处理后处理,是在 EOS的M400-4 打印机上开发的,可制造最小密度为 99.94%、最小拉伸强度为 28.3 的 GRCop-42 铜组件ksi,最小极限屈服强度为 52.7 ksi,最小伸长率为 32.4%。重要的是,该技术避免了在后处理步骤中使用热等静压机,从而减少了生产时间、复杂性并降低了成本。这些通过使用GRCop合金的增材制造技术生产的性能更高的火箭发动机部件,可用于未来的月球、火星和其他地方的任务。

围绕着铜合金,Sintavia在进一步提升其独特的优势,以具有成本效益和优异机械性能的方式释放难以打印的材料的潜力。而能够在 GRCop-42 上达到这些性能水平这一事实进一步巩固了 Sintavia 作为增材制造在航空航天、国防和航天行业应用的独特地位。

文章来源: 3D科学谷,cnBeta

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:金属狂想曲
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...