生物传感技术精度不断提升,可穿戴设备将摆脱鸡肋“形象”

传感器智造师 2023-05-26
2658 字丨阅读本文需 7 分钟

众所周知,可穿戴无线生物传感器是数字医疗保健和监控不可或缺的一部分。常用的基于无芯片谐振天线的生物传感器价格实惠且简单,但由于灵敏度低,适用性有限。

然而,来自日本的科学家最近提出了一种无线的,新颖的,基于奇偶校验时间对称的生物谐振器,该谐振器有可能检测微量的血乳酸和泪液葡萄糖。这种可调谐、高灵敏度和强大的生物谐振器有可能彻底改变个性化健康跟踪和数字化医疗保健系统。

无线可穿戴生物传感器已成为个性化健康监测和医疗保健数字化的转折点,因为它们可以有效地检测、记录和跟踪医学上可观的生物信号。

众所周知,无芯片谐振天线是可穿戴生物传感器中非常有前途的组件,因为它们易于处理且易于亲和。然而,由于系统的质量(Q)系数低,它们的实际应用受到低灵敏度(无法检测小生物信号)的限制。

为了克服这一限制,以早稻田大学的三宅武夫教授、北京理工大学的尹思杰教授和日本宇宙航空研究开发机构的Taiki Takamatsu为首的科学家提出了一种使用“奇偶校验-时间(PT)对称性”的无线生物谐振器,可以检测微小的生物信号。

他们的研究已发表在《先进材料技术》杂志上。

该系统由科学家(在这种情况下,包括葡萄糖特异性酶)在人类泪液上进行了测试。研究小组发现,它能够检测0.1至0.6mM范围内的葡萄糖浓度。

他们还用乳酸特异性酶和市售的人体皮肤对其进行了测试,发现它可以在没有任何敏感性损失的情况下,通过人体皮肤组织量化0.0至4.0mM范围内的乳酸水平。此外,这一结果表明生物传感器可以用作植入式装置。与传统的基于无芯片谐振天线的系统相比,PT对称系统在基于阈值的检测方面获得了78%的相对变化,线性和线性灵敏度分别提高了2000倍。

这种新开发的PT对称无线可穿戴生物谐振器可能很快就会引领个性化健康监测和有效数字化医疗系统的新时代。

苹果打开无创血糖检测先河

早前,有新闻报道苹果正在研发的血糖监测系统使用一种光谱吸收测量法,让人们无需刺破皮肤,就能用“光”来测量血糖。这项时任苹果CEO乔布斯秘密研发12年的项目在推向市场后,将应用于Apple Watch系列产品中,能省去目前市场中“贴片式”无创血糖监测产品,每7-14天就要更换传感器芯片的“麻烦”。

该项目的背后是一个巨大市场。IDF数据显示,全世界约有1/10的成年人患有糖尿病,总数超过5亿人。2022年,我国糖尿病患者约1.4亿人,几乎占据全国人口的10%。如此广阔市场也吸引了德州仪器、艾迈斯欧司朗等众多拥有技术优势的厂商,纷纷进军以血糖监测为代表的医疗传感器领域。

目前,主流血糖监测方式是通过采血精准监测人体血液中葡萄糖含量。也有企业推出了可植入皮肤的“贴片式”血糖监测贴片,其中安置传感器芯片。不过,传感器作为其中的耗材部分,每7-14天就要更换一次,成本很高。

但苹果的方式有所不同。苹果研发的血糖监测系统将通过硅光子芯片和传感器,让人们无需刺破皮肤,就能用“光”来测量血糖。此外,由于传感器被安置于可长时间使用的AppleWatch可穿戴设备中,不需要定期更换,能大幅节约用户使用成本。

传感器是这种光谱吸收测量法涉及的重要环节之一。中国电子学会气湿敏专委会副主任、宁波大学教授简家文告诉《中国电子报》记者,苹果正在研发的血糖监测系统估计是使用激光,将特定波长的光线发射到皮肤下方有组织液的区域。之后,光线会被反射回传感器,再通过某种算法来确定葡萄糖浓度,以确定人体内血糖水平,实现对人体血糖的监测。

记者在采访中还了解到,当前无创血糖监测产品使用的传感器技术路线多样,包括近红外光谱法、拉曼光谱法、反离子渗透法等,但各类技术仍需进一步解决测试指标与血糖关联性差的问题。

其他热门生物传感应用

可穿戴设备结合下一代生物传感器技术除了无创血糖之外,还会通过给用户带来新的用户体验来实现新的市场突破。这些新的用户体验中,最热门的就包括实时血压监控和EMG信号监控。

首先,实时血压监控将会给有心血管疾病风险的用户带来革命性的健康管理工具。一般来说,血压在每天中都会有波动,但是传统的血压测量方法对于用户来说并不方便,因此很难实现高频率地测量,更不用说实时监控,这样就给心血管疾病的管理带来的困难。而在可穿戴手表中的实时血压监控则可以解决这个问题。从技术上来说,实时血压监控使用的是PPG传感器搭配机器学习算法。PPG传感器技术并不新,目前已经广泛应用在可穿戴设备的心率和血氧指标检测中。但是,当使用PPG来检测血压的时候,首先对于PPG的读出精度有了不同的需求,这也就需要PPG传感器的指标有新的进步;

另一方面,更重要的是相关的机器学习算法。因为PPG和血压之间并非简单的线性关系而是会有一个复杂的对应关系,需要考虑各种因素,因此当使用PPG来检测血压的时候,就需要能运行一个相关的机器学习算法。显然,这样的机器学习算法需要能在可穿戴设备直接运行而不能到云端去运行,因此可穿戴设备上的芯片就需要有这样的运行人工智能算法的能力,而且随着人工智能算法的逐渐演进,为了实现高精度的PPG-血压监控,相关算法很可能会越来越复杂,因此也就需要可穿戴设备对于这样的算法有相应的支持。此外,人工智能算法也需要高质量的输入,因此PPG传感器能提供的信号质量也会成为人工智能算法输出准确度的关键指标。

除了血压监控之外,EMG也是一个很有潜力的方向。EMG可以实现肌肉相关的神经信号读出,从而可以高精度监控手部的细微动作,举例来说手指的细微弯曲,两个手指的上下动作等等。而这也会是未来AR等新应用中的重要一环,因为AR等头戴式设备中,如何实现用户输入一直是一个很难的问题,而如果可以通过手部的细微动作就来操作AR设备就会是一个重要的突破。在五年前,初创公司CTRL Labs已经实现了使用EMG来让用户用手部细微动作来操作复杂的电脑游戏,而该公司已经在2020年被Facebook收购。随着硅谷各大科技巨头都在押注ARVR,我们预计EMG相关的生物传感器也会成为热点。EMG传感芯片主要分为两部分,一部分是传感部分,使用电极读出用户的神经信号,该部分需要高精度模拟信号处理来确保读出信号的信噪比。EMG传感器的另一部分是人工智能部分,在读出神经信号之后,如何把这些信号对应到相关的手部动作,该操作最有可能还是会需要人工智能来完成,因此这就需要EMG可穿戴式设备能完成人工智能算法的加速。

生物传感器未来发展方向

如前所述,我们看到了可穿戴设备中的生物传感器在未来几年可望会得到进一步发展。我们认为,这些新的发展方向基本可以概括为如下两个方面:

首先是新模态新号的传感,这就包括了荧光信号,EMG信号等。通常来说,这类信号的传感在较大的设备中已经有了先例,这里的挑战主要是如何把相关的系统小型化,能用体积可以被可穿戴设备容纳的芯片系统所实现。当然挑战也有很多,比如我们之前提到的体积、信噪比、能效比和输出功率等,这里需要传感器、模拟电路和数字系统设计等多个领域的交叉优化才能实现。

其次是智能化,即相关人工智能算法的支持。目前人工智能已经成为许多传感器输出信号处理的首选方案,而随着人工智能的演进,势必需要可穿戴设备越来越多地支持传感器相关的人工智能算法,因此我们可望会看到越来越多的人工智能相关模块会出现在可穿戴设备中,这也将会为人工智能相关芯片和IP带来新的市场。

文章来源: 柔智烩,半导体行业观察,中国电子报

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:传感器智造师
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...