氢电耦合有什么作用?发展路径该如何制订?

发电驿站 2023-07-19
2128 字丨阅读本文需 6 分钟

近日,国内首个氢电耦合中压直流微网在浙江宁波投运。该项目实现氢产业全链条相关设备国产化,氢电转换效率达到世界领先水平。

与此同时,记者在近日举办的绿氢制备与现代电力系统论坛上了解到,实现氢电协同可发挥各自优势,更好促进新能源消纳利用,提高能源基础设施投资与运行效率,共同支撑能源清洁低碳转型。

氢电耦合发挥各自优势实现互补

氢电耦合是指氢能和电能互相转化、高效协同的能源网络,在用电低谷时将清洁能源电力制氢存储,在用电高峰时再通过氢燃料电池发电,实现电网削峰填谷。宁波此次投运的示范项目将氢能与风电、光伏等可再生能源耦合运行,同时通过氢能微网,满足用户对电、氢、热多种能源的需求。

据了解,除宁波外,目前国网浙江电力还在杭州、丽水、台州等地开展了基于工业园区、产业基地、农村、海岛等的氢电耦合多场景示范与应用,覆盖氢电耦合主要应用场景。

“到2060年,新能源占比预计将超过70%,成为装机和发电的主体。因此,要实现以电网为主、氢能为辅的氢电耦合协同新型能源供给模式,保证绿色能源安全供应和消费。”德国国家工程院院士雷宪章指出。

在业内专家看来,对于电网而言,氢能的两大功能值得关注,一方面,氢能可吸收脱碳电能,增加电网的灵活性;另一方面,氢能可以减少对化石能源的依赖,帮助电力行业实现绿色转型。

国网能源研究院张宁表示:“当前,电气化已成为能源低碳转型的重要路径。氢能绿色清洁、灵活高效、易于存储,可作为原料、燃料和高品位热源,助力难以电气化的领域实现深度脱碳。同时,电力系统可充分利用氢能物理可存储、时空可转移、形态可转换的特征,发挥其闲置的或通过改造可利用的可调节特性,满足电力系统灵活性需求。”

氢能将在制、用等环节和电力系统产生更多耦合关系

氢能作为连接气、电、热等不同能源形式的桥梁,未来将在制、用等环节与电力系统产生更多的耦合关系。

氢能是促进新能源消纳的重要手段。未来,大规模新能源将快速发展,利用新能源制氢可提升新能源消纳水平。

氢能是实现电能跨季节长周期大规模存储的重要途径。氢储能具有储能容量大、储存时间长、清洁无污染等优点,能够在电化学储能不适用的场景中发挥优势。在大容量长周期调节的场景中,氢储能与电化学储能相比在经济性上更具有竞争力。

氢能是新型电力系统灵活调节的重要手段。先进的电解水制氢装备具有较宽的功率波动适应性,可实现输入功率秒级、毫秒级响应,为电网提供调峰调频等辅助服务,提高电力系统的安全性、可靠性、灵活性。

氢能是拓展电能利用、促进能源互联互通的重要路径。氢能作为灵活高效的二次能源,在能源消费侧可以利用电解槽和燃料电池,通过电氢转换实现电力、供热、燃料等多种能源网络的互联互补和协同优化,推动分布式能源发展,提升终端能源利用效率。

特高压可在跨区域的绿氢输送中发挥作用

通过风能、太阳能等可再生能源发电电解水制得的氢气被称为绿氢。预计到2030年,全国各地区绿氢供需基本自给自足,西北地区的绿氢产量及需求量在各地区中均为最高。预计到2060年,西北地区依然是我国最大绿氢产地,产量超出本地需求,但华东、西南、华南、华北、华中等地区的绿氢供给难以满足本地需求,需要实现跨区域输送。从远期来看,我国绿氢发展在地理分布上存在供需不匹配问题,绿氢生产与消费需求呈现逆向分布的特征。保障能源安全、经济供给,需要对绿氢进行远距离、大规模输送。

绿氢的远距离、大规模输送可通过输氢、输电两种方式开展。前者是利用可再生能源电力就地制氢,通过输氢管道将绿氢跨区域输送至需求侧消纳;后者是利用特高压输电技术跨区域输送可再生能源电力,在需求侧通过电制氢满足当地绿氢需求。在不同输送距离的场景中,输氢与输电的经济性不同。随着输送距离增加,输氢管道建设、运维等成本明显增加。我国特高压输电技术较为成熟,在远距离、大规模等特定能源输送场景中,特高压输电代替管道输氢具有更好的经济性。

综合考虑输送场景、经济性等因素,需要通过电氢耦合的方式来实现未来我国各地区绿氢供需平衡。2030年前,以区域内部绿氢输送为主,少部分绿氢需要跨区域输送。2030年后,需要综合考虑可再生能源基地分布、输电通道与输氢管道最优容量配置,因地制宜开展电氢协同规划建设。

制订分阶段发展路径推动电氢耦合发展

在新型电力系统中应用氢能需要统筹安全、技术、经济等因素,结合我国能源转型及氢能产业发展各阶段面临的挑战,按照发展时序,制订分阶段发展路径,才能充分发挥氢能对新型电力系统的灵活调节作用,并实现电氢耦合发展。

2030年前,建议开展电氢耦合技术攻关及典型场景下的工程示范,推动宽范围、大容量、高效率、低成本、模块化电解水制氢技术装备的工程化商业化应用,实现可再生能源电力电解水制氢工程规模化发展,促进可再生能源消纳。

2030至2045年,建议进一步加强储氢、氢能发电技术研究,推动低成本、高密度、大容量储氢技术工程化商业化应用,实现电制氢、氢发电、热电联供等特定场景下工程规模化部署,让氢能的调峰调频作用得到更大发挥。随着新型电力系统建设不断推进,氢能产业链逐步完善,可再生能源电力制氢成为重要的可调节负荷。同步规划可再生能源发展、电网输送通道建设、输氢管道建设及电制氢项目建设,形成可再生能源电力电解水制氢与电网协同互动的建设格局。

2045年后,建议开展大规模、长周期、跨季节氢储能工程应用,支撑电力系统季节性电力电量平衡。氢能制取、储运、发电等各个环节与新型电力系统源、网、荷各个环节深度耦合。采用可再生能源电力进行电解水制氢,逐步成为氢能的主要来源。因地制宜建设氢储能电站,利用氢储能特性实现电能跨季节长周期大规模存储,支撑电力系统安全稳定运行。

文章来源: 国家电网报,全国能源信息平台,中国能源报

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:发电驿站
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...