用“折纸”技艺实现触觉感知!西湖大学“模块化机器人”研究获得突破

自动化最前线 2023-08-16
2255 字丨阅读本文需 6 分钟

提起元宇宙,大家最直观的感知,或许还是一个只能在视觉上模拟真实世界的VR眼镜。但让人没想到的是,古老的东方手工技艺“折纸”,率先实现了从虚拟到真实的关键突破。

近日,西湖大学和浙江大学的研究团队公布了一种新型的模块化机器人,它的灵感来自折纸艺术,特别是一种叫做克雷斯林(Kresling)图案的折叠方式,他们在《自然通讯》杂志上发表了该研究论文,介绍了这个基于全新的通用可变形模块重新排列来创造不同的形状和构造的设计。

一种像折纸般伸缩的模块化机器人

姜汉卿教授是该研究团队的主要成员之一,据西湖大学官网介绍,姜汉卿教授2001年博士毕业于清华大学力学系,2006年加入美国亚利桑那州立大学,2016年获得正教授职位,主要从事柔性电子与软/硬异质性材料研究。

2021年6月,来自亚利桑那州立大学的姜汉卿教授及其团队正式加盟西湖大学工学院。在加入西湖大学前不久,姜汉卿刚刚获得美国机械工程师协会颁发的伍斯特·里德·华纳奖章,得奖理由是“将硬薄膜与软基底结合,探索了该结构在大变形时的后屈曲特性,并将其应用在很多领域”。

姜汉卿曾经的导师是清华力学泰斗黄克智院士,原本的研究方向为固体力学的他在后来跨界研究材料学,进而提出了柔性电子技术理论,并成功制造了可折叠锂离子电池和太阳能电池,在可折叠电子领域有多年的深度研究经历。姜汉卿表示,在他们团队之前就已经有人试图用克雷斯林模式来制造多模式机械臂,但都只是基于克雷斯林模式本身,所以变形受到了限制,无法灵活地扭曲和收缩。而他们的主要目标是修改传统的克雷斯林模式,创造出新的变形方式。

克雷斯林图案是由一系列沿着相反扭曲方向的角度相交的山形和谷形折叠构成,这种图案可以用来创造出类似于自然界中看到的复杂形状,比如蛾翅膀上的花纹或者松果上的螺旋形状。

姜汉卿教授研究团队通过模型侧面单独的气动驱动袋,打破克雷斯林折纸图案的能量有利变形模式,即耦合扭曲和收缩,从而添加了弯曲模式,成为了一个通用模块。该模块可以实现弯曲、扭转、收缩/伸展等三种解耦的基本运动类型,以及这三种基本类型的四种组合,总共七种不同的运动模式。

姜汉卿教授介绍该项目时说:“我们的双层模块是一个通用的可变形单元,可以通过不同的压力方案实现所有可能的变形方式。这个模块就像机器人的手臂,可以执行各种变形方式,比如收缩、伸展、扭转、弯曲,具体取决于控制肌肉的方式。压力方案就像神经,而通用模块则充当手臂。这种基于折纸原理的机械臂就像是一个有六个自由度的坚硬的机械臂。”

撬动VR世界的星辰大海

那么,最前沿的VR和元宇宙,怎么会因为传统的折纸艺术而破局?

姜汉卿2021年加盟西湖大学后,最早启动的课题之一就是柔性电子与软/硬异质性材料研究,他首次将“折纸机械超材料”概念带入大众视野。所谓“机械超材料”,是指并非自然形成,而是人为构造的材料结构,材料的性能不依赖于分子结构或者晶体结构本身,主要依赖于其精巧构型里的结构细节。

从事“折纸研究”十年之久,又感知到了元宇宙的蓬勃发展,姜汉卿萌生了把两者结合起来的念头。“折纸材料可能很软,但是依赖于不同折叠方式,折纸结构又会变得很硬,基于折纸结构的机器人,就可以随时调节软硬程度。”

摆脱当前虚拟现实交互的固有思维定势,姜汉卿创造了“主动触觉”这个新概念——不同于肩、胸、腰、背等人类身体通常接收“被动触觉”的部位,人的手和脚通常是主动出击,通过主动触摸去感知物理世界。研究团队选择从“机械触感”入手,模拟手和脚主动触摸物体时的感觉。

研究团队研发了一套“高保真主动机械触感交互系统”,利用不同材质、不同尺寸的折纸模块搭建了两种不同维度的交互装置:一种可引发局部触感的手持式装置,与一种可以产生全身体感的脚踏式装置。在使用手持式交互装置时,用户可通过主动抓握,体验其所交互的不同物品的软硬程度;在使用脚踏式装置时,用户则可通过主动踩踏,以全身运动的形式体验其所处的环境地面特性。

这种主动机械触感的实现,源于硬件设备内部曲面折纸结构在交互过程中,由用户主动触发的被动变形——在电机的配合作用下,曲面折纸能弯曲成不同的角度,也会产生不同大小的反力,从而给予用户手足不同的“弹性”反馈。

向虚拟世界伸出精妙之“手”

如果说,这项研究中最大的创意来自“折纸”,那么,实现创意的最大挑战就来自“怎么折”——既能完美实现主动触感,又能集成于有限空间。就像现实世界的折纸一样,人人都会,但只有那心灵手巧的艺人,才能展现其精妙之处。

在姜汉卿实验室,有一个“手持式装置”——形状像一个球,5个位点对应人的5个手指,每一个位点下面就是呈现“X”形状交叉两片成组的曲线折纸塑料片;10个塑料片,全靠一个电机带动,以扭转成各种不同角度,形成不同的“软硬度”。与之配套的脚踏式装置,原理一样,差别在于踏板下是钢片,数量更多、矩阵排布,通过拉绳方式改变曲线折纸的角度以改变刚度。

这些设备里没有任何昂贵或罕见的器件。无论是“手球”里的塑料片,还是“踏板”中的钢片,均为网购,可以被替换为任何有弹性的材料。核心器件就是可以根据虚拟场景而相应变化的曲线折纸。如果核心结构一致,交互的硬件设备也可以放大或缩小。这意味着一旦找到合适的应用场景,它将有望快速进入生产市场。

研究的最后一步,团队进行了人体感受表征验证,包括“主观”的用户调查和“客观”的肌电图、心率测量。这一表征验证详细记录了体验者在虚拟冰面破裂时,心跳急速变快的真实生理反应。那一刻踏板突然塌陷,让人瞬间产生踏空坠落的恐惧感。虚拟世界,就这样创造出了真实世界的完美触感。

姜汉卿团队的这项研究,为虚拟现实交互提供了全新的模式与体验,为超材料在元宇宙中的进一步集成提供了指导方案,也有望拓展虚拟现实技术在娱乐、遥操作、医疗诊治与康复等领域的广泛应用。

接下来,研究团队将继续找到多模式的感知,还原更完整的触觉,在形态上,他们正在尝试和柔性电子整合,实现主动触觉与被动触觉的结合,以及努力用折纸实现更大尺度体验,在更大场景实现交互。“比如在游戏中要骑摩托车,能不能直接从地面‘长出’可以触摸到的摩托车来……”姜汉卿说。

文章来源: 高分子科学前沿 ,北青网,机器人大讲堂

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:自动化最前线
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...