氧化锆陶瓷应用前景广阔,带有颜色的氧化锆陶瓷生产难度在哪?

材料那些事 2023-08-29
4557 字丨阅读本文需 11 分钟

氧化锆系陶瓷材料作为先进陶瓷中最重要的一类材料,是一种现代高新技术产业发展非常重要的基础材料。

我国从50年代初就开始研究以氧化锆为主的新型陶瓷,于70年代末期制备了结构陶瓷中强度和韧性最高且可以相变的四方相氧化锆陶瓷。

氧化锆是一种弱酸性氧化物,具有良好的化学性质,除硫酸和氢氟酸外,对于其他酸、碱及碱熔体、玻璃熔体和熔融金属都具有很好的稳定性。在大家的认知里,陶瓷一般是又硬又脆的,但氧化锆陶瓷基复合材料具有优良的力学性能,因为氧化锆在常压下温度由高到低呈三种状态存在,即单斜相(m)、四方相(t)、立方相(c)。随着温度变化三种相会依次相互转化,在此过程中会引起陶瓷基体的体积变化,进而在基体中会出现大量的微裂纹,可以分散尖端应力,提高其力学性能。部分稳定氧化锆力学性能优良、导热系数低、抗热震性良好,是一种应用前景广阔的新型结构陶瓷。

氧化锆应用广泛、市场广阔,具体的应用包括固体燃料电池、汽车尾气处理、齿科材料、陶瓷刀具以及氧化锆陶瓷光纤插芯等。

随着手机5G时代的临近,氧化锆陶瓷因具有手感温润如玉、抗刮耐磨、无信号屏蔽、散热性能优良等特性,再次成为产业的热点。氧化锆陶瓷手机背板产业迅速兴起,让资本趋之若鹜,疯狂争夺百亿元新兴产业市场。

氧化锆陶瓷可以抛光且外观美观,并且成本较低,是可穿戴的绝佳材料,近年来也被广泛应用于智能穿戴中。

氧化锆陶瓷具有高硬度、高耐磨、良好的高温热稳定性以及耐热冲击性能。随着氧化锆陶瓷的发展,其应用领域已从过去的耐火材料等领域,扩展到了现如今的结构陶瓷、生物陶瓷以及电子功能陶瓷等领域,且在航天航空和核工业等高新技术领域也有着活跃的应用。

01

“五颜六色”的氧化锆陶瓷

氧化锆陶瓷的颜色和性能密切相关,不同的添加剂会导致氧化锆陶瓷呈现出不同的颜色和性能。在市面上,我们可以看到氧化锆陶瓷有不同的颜色,这主要是因为氧化锆陶瓷会因为添加不同的稀土元素、金属元素、氧化物等材料,而呈现出不同的颜色。常见的氧化锆陶瓷颜色包括白色、黑色、粉色、蓝色等。不同颜色的氧化锆陶瓷具有不同的化学成分和晶体结构,因此它们的性能也有所不同。

1、常见的氧化锆陶瓷颜色有以下几种:

①白色氧化锆陶瓷:

白色氧化锆陶瓷是最常见的氧化锆陶瓷颜色之一,其颜色与其高纯度的化学成分和良好的透光性有关。纯氧化锆陶瓷呈白色,具有较高的透光性和高的抗弯强度。

颜色对其性能影响较小,但若是颜色明显偏黄,则可能含有较高的杂质,其性能或将受到影响。

性能特点:

高硬度和高强度,常用于制造刀具、磨具等高强度零件;

优异的耐磨性和耐腐蚀性,可用于制造高耐磨零件;

高绝缘性能,用于制造电子元件等高绝缘性零件。

②黑色氧化锆陶瓷:

通常是通过在氧化锆陶瓷中添加碳化物或氮化物等材料制成的,可以使其呈现黑色,具有良好的导电性能和高的硬度,其颜色与添加剂的类型和含量有关。

黑色氧化锆陶瓷的颜色对其性能影响较小,但如果颜色太浅,则可能添加剂含量较低,性能可能受到影响。

性能特点:

高硬度和高强度,常用于制造高强度零件;

优异的导电性能,常用于制造电子元件中的导电部件;

良好的耐高温性能,常用于制造高温零件。

③蓝色氧化锆陶瓷:

蓝色氧化锆陶瓷是通过在传统氧化锆陶瓷中添加少量的铜、铁、镍等金属元素来制备的。

性能特点:

高硬度和高韧性,常用于制造高强度和高韧性零件;

优异的耐磨性和耐腐蚀性,常用于制造高耐磨和耐腐蚀零件;

良好的透光性和抗辐射性能,常用于制造医疗器械等高透光和抗辐射零件。

④粉色氧化锆陶瓷:

粉色氧化锆陶瓷的颜色与添加稀土元素的类型和含量有关,在氧化锆陶瓷中添加氧化铈等稀土元素制成的。

⑤其他颜色:在氧化锆陶瓷中添加其他元素,如铬、钴、镍等,也可以使其呈现出不同的颜色,同时也会影响其性能。

不同颜色的氧化锆陶瓷在物理、化学和机械性能方面可能存在差异。例如,添加稀土元素可以提高氧化锆陶瓷的韧性和耐磨性,而添加碳化物或氮化物可以提高氧化锆陶瓷的硬度和导电性能。

2、带有颜色的氧化锆陶瓷生产难度

非常规白色氧化锆陶瓷的生产难度比普通白色氧化锆陶瓷更大,主要由以下几个方面的因素导致:

①原材料的选择和质量控制

生产非常规白色氧化锆陶瓷需要选择特殊的原材料,如超纯氧化锆粉、高纯度稀土元素等,这些原材料的选用和质量控制都需要更高的技术和成本。

②工艺流程的控制和优化

需要精细的工艺流程控制和优化,如原材料的混合、球磨、成型、烧结等环节,需要对每个环节进行精细的控制和优化,以保证最终产品的质量和稳定性。

③设备的要求和更新

需要更高级的生产设备和技术,比如高温烧结炉、球磨机、成型机等,这些设备需要更高的技术和成本,同时设备的更新和维护也需要更高的投入。

④质量的检测和控制

需要更严格的质量检测和控制,以确保产品的质量和稳定性。这些检测和控制涉及到多个方面,如化学成分、物理性能、表面质量等,需要更高的技术和设备支持。

以蓝色氧化锆陶瓷加工难点举例:

首先,由于蓝色氧化锆陶瓷的硬度极高,常规的钻削和铣削加工难以达到良好的加工效果,需要采用超硬磨削工具进行加工。

其次,蓝色氧化锆陶瓷的韧性较高,发生切削削角变小、刀具过热和表面裂纹等问题的概率更大,需要进行合理的刀具选择、切削参数控制和切削液冷却等措施。

此外,其加工精度要求较高,容易产生表面质量不良、尺寸偏差等问题,需要采用如高精度数控加工中心和光学测量仪等先进的加工技术和设备来保证加工质量和效率。

因此,蓝色氧化锆陶瓷的加工相较于普通白色氧化锆陶瓷具有更高的技术含量和难度,需要专业的加工工艺和设备以及熟练的加工技术人员。

02

氧化锆陶瓷应用

1、在多孔陶瓷领域的应用

ZrO2多孔陶瓷除了具有熔点高、硬度大、热导率低、热稳定性好和高温蠕变小等特性,同时还具备多孔陶瓷密度小、强度大、气孔率高、比表面积大、对流体自扰性强及过滤吸附性好等特点。

此外,ZrO2的马氏体相变可起到相变增韧、微裂纹增韧和弥散增韧等增韧效果,可极大地提高多孔陶瓷的韧性和强度。

在催化领域的应用

氧化锆是一种独特的氧化物,不仅具有酸性中心和碱性中心,还具有氧化性和还原性,与催化剂活性组分容易产生较强的相互作用。多孔ZrO2陶瓷可以用做一种优良催化剂和催化剂载体。利用全稳定氧化锆具有较高的氧离子电导率的特性,可以实现ZrO2多孔陶瓷在氧传感器和固体燃料电池电介质等功能材料领域中广泛应用。

在保温隔热领域的应用

ZrO2多孔陶瓷结合了陶瓷材料和孔隙结构的优点,在保温隔热方面应用广泛。比如,航天飞行器和工程结构材料(如涡轮机叶片、喷气式引擎等)在恶劣的环境中需要特殊的材料给予保护。这些保护层材料不仅要使被保护材料不受腐蚀、磨损和冲蚀,还要起到隔热的作用。将氧化锆基材料制成多孔陶瓷可进一步降低热导率,减小密度。同时,多孔陶瓷中的孔结构还可以缓解热膨胀不匹配造成的应力。

在过滤方面的应用

氧化锆陶瓷过滤片最高使用温度1760℃,广泛用于过滤各种铸钢件和大型铸铁件,高温母合金及航空铸件,磁性材料,铜镁合金连铸造和有色金属合金低压铸造领域。

在结构陶瓷领域的应用

氧化锆陶瓷力学性能较好,其作为工程结构材料应用非常广泛。

① 陶瓷轴承

氧化锆全陶瓷轴承具耐磨、耐腐蚀、耐高温、耐高寒、无油自润滑、抗磁电绝缘等特点,可用于极度恶劣的环境及特殊工况。目前氧化锆陶瓷轴承已被微型冷却风扇所采用,其产品寿命及噪音稳定性均优于传统的滚珠及滑动轴承系统。

② 陶瓷阀门

由于受金属材料自身的限制,金属的腐蚀破坏对阀门耐磨性的作用期限、可靠性、使用寿命具有相当大的影响。氧化锆陶瓷阀门具有优良的耐磨性、防腐性、抗高温、抗热震性,可以有效代替传统金属合金阀门,尤其是在恶劣的工作环境中,有效降低磨损、提高耐腐蚀性,从而大大提高寿命。

③ 研磨材料

氧化锆具有高的硬度和耐磨性,所以氧化锆在磨介和磨具领域中有着广泛的应用。如球磨球和球磨机内部衬里和耐磨部件,拉丝模等。

氧化锆磨球硬度大、磨损率小、使用寿命长,可大幅减少研磨原料的污染,能够很好地保证产品质量,同时氧化锆材料密度大,用做研磨介质时撞击能量强,可大大提高研磨分散效率。其良好的化学稳定性决定了其耐腐蚀性,可以在酸性和碱性介质中使用。我国关于韧性陶瓷在磨介领域占一半以上,而其中氧化锆球占绝对优势。

2、在功能陶瓷领域的应用

① 陶瓷刀具

氧化锆陶瓷刀具具有高强度、耐磨损、不生锈、无氧化、耐酸碱、防静电、不会与食物发生反应的特点,同时刀体光泽如玉,是理想的高科技绿色刀具,主要有氧化锆陶瓷餐刀、剪刀、剃须刀、手术刀等。

② 高温发热元件

氧化锆在常温下为绝缘材料,比电阻高达1015Ω·cm,温度升高至600℃可以导电,而在1000℃以上时是良导体,可作1800℃高温发热元件,最高工作温度可以达到2400℃,目前已被成功用于2000℃以上氧化气氛下的发热元件及其设备中。

③ 生物陶瓷材料

氧化锆陶瓷材料在生物医学领域内最常见的应用是作为齿科修复材料。利用氧化锆材质制作的烤瓷牙透明度好、光泽度极佳、质量优良,氧化锆材质的强韧性还弥补了普通烤瓷牙易崩缺的缺点,生物相容性好,不刺激口腔粘膜组织,易于清洁,是目前国内外最优质的烤瓷牙,堪称烤瓷牙家族中的贵族。此外,氧化锆材料还能制成人造骨骼、人造关节等用于医疗目的。

④ 涂层材料

高性能Y2O3等稳定剂稳定的氧化锆热障陶瓷涂层材料,主要应用于高性能涡轮航空发动机。热障涂层利用陶瓷的隔热和抗腐蚀的特点来保护金属材料,不仅可以提高油料的燃烧效率,而且可以极大地延长发动机的寿命。在航空、航天、海面船舶、大型火力发电和汽车动力等方面具有重要的应用价值,是现代国防尖端技术领域中的重要技术之一。

⑤ 通讯材料

目前,陶瓷插芯和套管广泛用于光纤连接器,增韧氧化锆陶瓷具有优良的力学性能、耐腐蚀及高绝缘性能,能够胜任这一领域。由高强度、高韧性陶瓷制成的陶瓷套圈不仅能满足高精度要求,而且使用寿命长,插入损耗和返回损耗极低。

⑥ 氧传感器

以氧化锆主要成分形成的压电材料,已经得到广泛的应用。利用氧化锆制成的氧传感器灵敏度高,已大量用于检测熔融钢水的含氧量,检测发动机中氧气与燃气的比例以及检测工业废气中氧气含量等。氧化锆陶瓷材料还能制成温度、声音、压力和加速度传感器等智能自动化检测系统。

⑦ 宝石材料

氧化锆陶瓷在智能穿戴领域的优势

目前智能穿戴设备主要应用在运动及健康领域,如记录运动量、心率检测等,随着人工智能技术的发展,智能穿戴设备日益智能化,将会成为我们生活中必不可少的用品。

现有的智能可穿戴设备的外壳多用金属或塑料。金属虽然散热效果更好,但这也是把双刃剑,因为金属的导热性可能会让设备变得烫手,影响手感,并且金属通常使用阳极氧化和多色喷漆处理,如果发生物理碰撞,非常容易掉漆及氧化,减少光泽度,影响美观;塑料的质感不佳,相比金属、玻璃产生的溢价感,相对来说较为黯淡,即便厂商不断加入花纹、仿皮革等不同设计元素,但就手感而言依然较为逊色,散热效果一般,热量可能无法及时散去,有可能会影响设备的运行效果。

而作为智能穿戴材料,陶瓷的优点有:

① 高硬度,耐磨损

氧化锆陶瓷从硬度来看,氧化锆陶瓷莫氏硬度在8.5左右,非常接近蓝宝石9的莫氏硬度,比日常使用的金属、玻璃硬度都高,不容易产生刮伤或磨痕,与喷塑、阳极、PVD相比克服了脱涂、退色、磨损等让人不舒服的问题,有比较优势。

②亲肤性、不过敏

钢质手表中会含有镍等物质,汗水中的化学成分(盐离子)会使表壳上这些金属元素更加活泼(离子化)会引起皮肤异常。而陶瓷材质不会有金属离子析出,并且由于热导率低,佩戴时不易导致过敏,与金属、塑料相比更亲肤,与人体相容性好,不易产生细菌。

③ 散热性、均热性好

散热性好,均热性也好,有效解决设备热传导问题,是最佳的散热方案解决材料。

④玉石质感,温润色泽

陶瓷具备玉石的色泽和质感,可通过添加稀土元素,人工调色,颜色多变,美观大方,可提升产品档次和消费者吸引力。氧化锆抛光后有玉一般的质感,是仅次于宝石的高端外观装饰材料, 有视觉上美感。

⑤ 不屏蔽信号

介电常数是蓝宝石的3倍,信号更灵敏,电绝缘,可实现无线充电,无信号屏蔽,支持智能设备定位、电话、支付、地铁刷表信号功能。

⑥ 适于批量生产,成本较低

纳米粉体国产化关键技术已经突破,满足陶瓷量产,量产成型方法有干压、注射、流延、凝胶注模等多种,生产成本较低。

文章来源: 无机非金属材料科学,中国建材报,CERADIR先进陶瓷在线

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:材料那些事
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...