击败人类世界冠军,创下竞速记录!AI无人机开启自动驾驶新纪元

黑科技看看 2023-09-28
3238 字丨阅读本文需 8 分钟

特斯拉一直是推动自动驾驶汽车的先驱,非常专注于基于视觉的技术。通过使用先进的神经网络和机器学习算法,特斯拉旨在实现完全自动驾驶(FSD)功能。虽然许多专家和怀疑论者质疑基于视觉的系统与基于传感器的系统相比的可行性,但苏黎世大学(UZH)最近的研究提供了有希望的证据,证明基于视觉的自主系统确实可以优于人类。

最近,苏黎世大学科研人员研究出了一个名为Swift的人工智能(AI)系统,搭载该系统的无人机首次成功在一对一冠军赛中战胜人类对手,这项研究成果有多重要呢?相关论文已发表在Nature期刊,并且登上了当期的封面!

AI无人机击败3位人类世界冠军

或许你没有听说过深度强化学习(Reinforcement Learning,RL)系统,但你一定听说过或接触过国际象棋、星际争霸(StarCraft)、Dota2和GT赛车这些游戏,如果你与电脑对战,那么电脑虚拟玩家就是通过深度强化学习来完成一系列操作的。在模拟和棋盘游戏环境中,AI可以轻松胜过人类,但在物理世界的竞赛,AI的决策和操作则面临诸多困难。

苏黎世大学的第一人称视角 (FPV) 无人机竞赛是专业选手在 3D 赛道上驾驶高速飞行的无人机,驾驶员可以通过机载摄像头传输的画面从无人机的角度观察环境,从而完成加减速、转弯等操作,让无人机穿越赛道中的障碍。自动驾驶无人机要达到职业飞行员的水准很难,因为机器人需要在其物理限制下飞行,同时只能根据机载传感器估算其速度和方位。

传统的无人机竞速方法包括轨迹规划和模型预测控制(model predictive control,MPC),但这种方法只能在理想条件下实施,一旦受到任何干扰,整个系统就会崩溃。而Swift系统克服了这个困难。Swift系统由两个关键模块组成:一是感知系统,将高维视觉(即空间立体视觉)和惯性信息转换为低维编码;二是控制系统,摄取感知系统产生的低维编码并产生控制命令。将这两个系统结合起来,便可以基于物理环境的细微变化进行实时决策调整。

当然,先进的感知系统和控制系统还不足以对抗人类冠军驾驶员。Swift系统比人类驾驶员具有一定的结构优势。首先,它能利用来自机载惯性测量单元的惯性数据。这类似于人类的前庭系统,人类驾驶员在比赛中无法使用该系统,因为他们实际上并不在飞机上,并且感觉不到作用在飞机上的加速度。其次,Swift系统受益于较低的感觉运动延迟(Swift为40毫秒,而人类专家的平均延迟为220毫秒)。FPV比赛使用的是四轴飞行器,它是有史以来最敏捷的机器之一。在比赛中,飞行器会施加超过自身重量五倍或更多的力量,即使在有限的空间内,速度也能超过100公里/小时,加速度是重力的几倍。因此,较低的延迟有助于让飞行器的行动更灵活。

在实际比赛流程中,人类飞行员在赛道上进行了为期一周的练习。之后,由Swift和人类控制的无人机需要在场地赛道中以正确的顺序穿过每一道门。Swift在与三位人类冠军正面交锋的比赛中均获胜,甚至创造了最快完成比赛的记录。

在AI控制的无人机战胜人类之后,自主移动机器人仍然有很多可以提升的方向。例如人类控制无人机时,即使发生了碰撞,只要硬件仍然正常工作,人类仍然可以控制无人机继续飞行并完成这段赛道,但Swift没有接受过碰撞后恢复的训练。即便存在诸多限制,但该研究成果已经成为移动机器人技术和机器智能的一个里程碑,它将助力自动驾驶的地面车辆、飞行器和个人机器人的快速发展。

融合 AI 与工程算法的智能训练

无人机竞速对经验飞行员和 AI 都具挑战,但 AI 而言,更具挑战性。因为在虚拟环境中,资源几乎是无限的,而转向现实世界意味着必须使用有限的资源。对于无人机来说,情况尤为如此,因为取代人类飞行员的传感器和计算设备必须被搭载到空中。另外,现实世界比虚拟世界更加不可预测。虽然模拟的比赛无人机可以按照预先编程的轨迹完美地行驶,但对一个无人机发出的单一指令可能产生多种效果,影响难以预测,对于通过 AI 训练的无人机尤为复杂。

传统的端到端学习方法难以将虚拟环境的映射转移到现实世界,虚拟和现实两者之间存在着现实差距,而现实差距构成了机器人领域中主要的挑战之一。在该研究中,Swift 系统通过将 AI 学习技术与传统工程算法融合,实现了智能训练。首先,该系统通过人工神经网络处理无人机从相机中获取的图像,从而精准地检测到门的角落。然后,利用双目视觉软件用来计算无人机的速度。

Swift 系统的创新之处在于另一个人工神经网络,将无人机的状态映射到调整推力和旋转速率的命令。利用强化学习,通过模拟中的试错过程来优化从环境中获得的奖励。在这个算法中,该系统采用了强化学习,而非端到端学习,从而可以通过抽象概念来弥合现实与模拟之间的差距。由于状态编码的抽象层次高于原始图像,强化学习模拟器不再需要复杂的视觉环境。这一优化减少了模拟系统与真实系统之间的差异,提升了模拟速度,使得系统能够在大约50 分钟内完成学习。

据论文描述,Swift 由两个关键模块组成:observation policy 和 control policy。其中,observation policy 由一个视觉惯性估计器和一个门检测器组成,可以将高维视觉和惯性信息转化为任务特定的低维编码;control policy 由一个两层感知器表示,可以接受低维编码,并将其转化为无人机指令。此次比赛的赛道是由一位外部世界级 FPV(第一人称主视角)飞行员设计的。赛道包括七个正方形的门,排列在一个 30×30×8 米的空间内,组成了一圈长达 75 米的赛道。此外,该赛道具有特色鲜明且具有挑战性的机动动作,包括 Split-S 等。即使发生碰撞,只要飞行器能够继续飞行,飞行员依旧可以继续比赛。如果发生碰撞且两架无人机均无法完成赛道,距离更远的无人机获胜。

Swift 与 Alex Vanover(2019 年无人机竞赛联盟世界冠军)、Thomas Bitmatta(2019 年 MultiGP 冠军)和 Marvin Schaepper(3X Swiss 冠军)等人进行了多场比赛。其中,Swift 在与 A. Vanover 的 9 场比赛中赢得了 5 场,在与 T. Bitmatta 的 7 场比赛中赢得了 4 场,在与 M. Schaepper 的 9 场比赛中赢得了 6 场。另外,Swift 共有 10 次失利,其中 40% 因与对手碰撞,40% 因与门碰撞,20% 因比人类飞行员飞行较慢。总体而言,Swift 在与每位人类飞行员的大多数比赛中取得了胜利。另外,Swift 还创下了最快的比赛时间记录,比人类飞行员 A. Vanover 的最佳成绩快了半秒钟。

从数据分析中可以看出,Swift 在整体上比所有人类飞行员都要快,尤其在起飞和紧急转弯等关键部分表现更为出色。Swift 的起飞反应时间更短,平均比人类飞行员提前 120 毫秒。而且,Swift 的加速度更大,在第一个门处达到更高的速度。此外,Swift 在急转弯时表现出更紧密的机动动作,这可能是因为它在较长时间尺度上优化了轨迹。与此相反,人类飞行员更倾向于在较短时间尺度内规划动作,最多考虑到未来一个门的位置。

此外,Swift 在整体赛道上实现了最高的平均速度,找到了最短的比赛线路,并成功地将飞行器保持在极限附近飞行。在时间试验中,Swift 与人类冠军进行比较,自主无人机表现出更加一致的圈速,平均值和方差都较低,而人类飞行员的表现则更加因个体情况而异,平均值和方差较高。

综合分析表明,自主无人机 Swift 在比赛中展现出了出色的性能,不仅在速度上表现优越,还在飞行策略上具备独特的特点,使其能够在整个比赛中保持高水平的表现。

当前全球人工智能处于第三个发展高潮期

人工智能至今已经有60多年的发展历史,其概念的提出始于1956年的美国达特茅斯会议,从诞生至今经历了三次发展浪潮。当前人工智能处于第三个发展高潮期,得益于算法、数据和算力三方面共同的进展。

基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。全球人工智能产业规模持续增长,2020年受疫情影响增速有所放缓。根据IDC公布的数据显示,2020年全球人工智能市场的规模比2019年增长12.3%,达到1565亿美元。IDC表示虽然全球AI市场受到了疫情影响,但是对人工智能市场的投资将会快速恢复。

虽然目前中国人工智能技术水平仍与美国有一定的差距,但是国际上更为看好中国人工智能产业的发展。据普华永道预计,未来十年中国将从人工智能中获得最大的收益,2030年人工智能产值将达到GDP比重的26.1%;而北美与西欧则分别占到各国GDP的14.5%和11.5%。

从全球范围来看,对人工智能基础设施市场的投资也在增加。Data Bridge市场研究公司数据显示,到2029年,全球这一市场的支出预计将达到4225.5亿美元,未来六年的复合年增长率将高达44%。全球AI产业规模预计2030年将达到1500亿,未来几年复合增速约40%。目前全球人工智能企业的数量迅速增长,2022年,全球人工智能(AI)市场规模估计为197.8亿美元,预计到2030年将达到1591.03亿美元,从2022年到2030年,复合年增长率为38.1%。

此次AI无人机打败人类冠军,无疑是一项突破性技术,但我们应看到它的两面性。作为AI领域的重要成就,该系统可以在更真实多变的环境中进一步开发,充分释放应用潜力;但另一方面,研究人员不得不思考由AI控制的无人机所应具备的技术和伦理范畴——包括但不限于软件漏洞、权限错误、人类最终决策权可能面临的挑战等种种问题。无论作为军事武器还是民用飞行,我们都要对AI驱动下无人机的异常情况有所防范。

文章来源: 中国科协,新智元,知兼,前瞻网

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:黑科技看看
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...