陈根:算力变革,量子计算的下一空间

陈述根本 2021-11-01

量子量子力学比特

766 字丨阅读本文需 2 分钟

文|陈根

近年来,量子计算技术与产业呈现加速发展态势,而有关量子计算技术的突破多与三个因素有关,即量子比特能够维持量子态的时间长度、量子系统中连接在一起的量子比特的数量和对量子系统出错的把握。

量子比特能够维持量子态的时间长度,被称为量子比特相干时间。其维持“叠加态”(量子比特同时代表1和0)时间越长,它能够处理的程序步骤就越多,因而可以进行的计算就越复杂。

其中,IBM率先将量子技术引入实用计算系统,将量子比特相干时间提高到了100微秒。而当量子比特相干时间达到毫秒级时,将足以支持一台能够解决当今“经典”机器解决不了的问题的计算机。

从量子系统中连接在一起的量子比特的数量突破来看,2019年10月,谷歌公司在《Nature》期刊上宣布了使用54个量子位处理器Sycamore,实现了量子优越性。

具体来说,Sycamore能够在200秒内完成规定操作,而相同的运算量在当今世界最大的超级计算机Summit上则需要1万年才能完成。这项工作是人类历史上首次在实验环境中验证了量子优越性,也被《Nature》认为在量子计算的历史上具有里程碑意义。

一年后,中国团队宣布量子计算机“九章”问世,挑战了谷歌量子的优越性,实现算力全球领先。“九章”作为一台76个光子100个模式的量子计算机,其处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍。史上第一次,一台利用光子构建的量子计算机的表现超越了运算速度最快的经典超级计算机。

量子力学是物理学中研究亚原子粒子行为的一个分支,而运用神秘的量子力学的量子计算机,超越了经典牛顿物理学极限的特性,为实现计算能力的指数级增长提供了实现的可能。

比如,针对人工智能产生的量子算法潜在应用就包括量子神经网络、自然语言处理、交通优化和图像处理等。其中,量子神经网络作为量子科学、信息科学和认知科学多个学科交叉形成的研究领域,可以利用量子计算的强大算力,提升神经计算的信息处理能力。

未来,算力随着技术的发展,将会从过去中心化的机房运算模式分化为前端设备、边缘计算、云计算等多维度的实时运算处理方式。

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:陈述根本
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...