新型射频控制系统如何增强量子计算机

1241 字丨阅读本文需 3 分钟

劳伦斯伯克利国家实验室(伯克利实验室)的物理学家和工程师团队成功证明了低成本和高性能射频模块在室温下进行量子位控制的可行性。他们构建了一系列混合信号的紧凑型射频 (RF) 模块,以提高超导量子处理器控制系统的可靠性。他们的测试证明,使用模块化设计方法可以降低传统 RF 控制系统的成本和尺寸,同时仍能提供与市售系统相比卓越或相当的性能水平。

他们的研究在《科学仪器评论》中值得关注,并被美国物理研究所选为Scilight,是开源的,并已被其他量子信息科学 (QIS) 小组采用。该团队预计 RF 模块的紧凑设计也适用于其他量子位技术。这项研究是在伯克利实验室的高级量子试验台 (AQT) 上进行的,这是一个由美国能源部科学办公室资助的合作研究项目。

左图:AQT 低温稀释冰箱。右图:两种射频混频模块:上变频器和下变频器。图片来源:Gang Huang 和 Yilun Xu/伯克利实验室

规模问题

尽管在构建具有更多量子位的处理器方面取得了重大进展,最终将需要证明其优于经典计算机的量子优势,但量子计算机仍然存在噪声和容易出错的问题。每个额外的量子位都会带来新的复杂性和电气故障的可能性,尤其是在室温下。这种复杂性和计算能力的增长需要重新考虑某些核心控制元素。

传统的射频控制系统使用模拟电路来控制超导量子位,但它们会变得庞大且极其复杂,从而成为潜在的故障点并增加硬件控制的成本。来自伯克利实验室加速器技术和应用物理部 (ATAP) 的 AQT 研究人员 Gang Huang 和 Yilun Xu 展示了一种控制量子位的新方法,该方法已经在测试平台的用户程序中增强了其他量子计算项目。该团队将更大、更昂贵的传统 RF 控制系统替换为在伯克利实验室构建的系统,该系统使用更小的交互式混合模块。

该模块化系统的一个关键方面是提供在室温下操纵和测量超导量子位所需的高分辨率、低噪声 RF 信号。为此,重要的是在电子基带和量子系统之间移动量子位操作和测量信号频率。

“新模块表现出低噪声、高可靠性的操作,现在正在成为我们在 AQT 中的许多不同实验配置中进行微波频率调制/解调的实验室标准,”黄解释说。

用于超导量子处理器电子控制的射频混合模块。图片来源:Gang Huang 和 Yilun Xu/伯克利实验室

使用该团队的低噪声 RF 混频模块在电子基带和量子系统固有带之间以有限的中频移动带宽,研究人员可以使用噪声较小的转换器来获得更好的性能和更低的成本。

Huang 和 Xu 指出,虽然他们的系统是为超导系统设计的,但它可以扩展到其他量子信息科学平台。总的来说,射频混频架构可以扩展到更高的频率。因此,如果更换一些频率合适的电子元件,这种紧凑的设计应该能够适应其他量子位平台,即半导体量子位系统。

研究人员还设计了电磁干扰屏蔽来消除不需要的扰动,这些扰动会降低信号完整性并限制整体性能。这种屏蔽旨在防止信号泄漏并干扰周围的电子设备——这是量子计算机的常见问题。

开源,开放硬件

随着开源控制系统的发布,团队希望更广泛的社区使用和贡献存储库,改进硬件。通过更换少量合适频率的电子元件,这种紧凑的设计可以适应各种量子计算设施。

“这是我们为超导量子处理器开发开源控制系统的首批努力之一,”黄解释道:“我们将继续优化模块的物理尺寸和成本,并进一步与我们基于 FPGA 的控制器集成,以提高量子位控制系统的可扩展性。”

展望未来,研究人员已经在这些努力的基础上创造量子计算的新可能性,并提供控制量子位的新技术。

“这种集成和优化将帮助基于室温的控制系统跟上量子处理器复杂性的进步,”徐说。

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:硬件君
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...