小白学习笔记之点积与叉积

计算机视觉与机器学习 2021-11-10

向量外积向量叉乘

869 字丨阅读本文需 9 分钟

专注于计算机视觉与机器学习知识分享

编者荐语

点积与叉积对于做计算机图形学的同学们来说肯定是掌握的非常熟练了,毕竟对于他们来说是最为基础且重要的概念,不过对于做图像相关的同学来说,可能就不是那么容易分清楚了。

点积(标积/ 内积 /数量积)

概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:


a和b的点积公式为:

这里要求一维向量a和向量b的行列数相同。注意:点乘的结果是一个标量(数量而不是向量)

定义:两个向量a与b的内积为 a·b = |a||b|cos∠(a, b),特别地,0·a =a·0 = 0;若a,b是非零向量,则a与b****正交的充要条件是a·b = 0。

向量内积的性质:

a^2 ≥ 0;当a^2 = 0时,必有a = 0. (正定性)

a·b = b·a. (对称性)

(λa + μb)·c = λa·c + μb·c,对任意实数λ, μ成立. (线性)

cos∠(a,b) =a·b/(|a||b|).

|a·b| ≤ |a||b|,等号只在a与b共线时成立.

向量内积的几何意义

内积(点乘)的几何意义包括:

表征或计算两个向量之间的夹角

b向量在a向量方向上的投影

有公式:

推导过程如下,首先看一下向量组成:

定义向量c

根据三角形余弦定理(这里a、b、c均为向量,下同)有:

根据关系c=a-b有:

即:

a∙b=|a||b|cos⁡(θ)

向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:

θ=arccos⁡(a∙b|a||b|)

进而可以进一步判断两个向量是否同一方向或正交(即垂直)等方向关系,具体对应关系为:

a∙b>0→方向基本相同,夹角在0°到90°之间

a∙b=0→ 正交,相互垂直

a∙b<0→ 方向基本相反,夹角在90°到180°之间

叉积(矢积/ 外积 /向量积)

概括地说,两个向量的外积,又叫叉乘、叉积向量积,其运算结果是一个向量而不是一个标量。并且两个向量的外积与这两个向量组成的坐标平面垂直。

定义:向量a与b的外积a×b是一个向量,其长度等于|a×b| = |a||b|sin∠(a,b),其方向正交于a与b。并且,(a,b,a×b)构成右手系。

特别地,0×a = a×0 = 0.此外,对任意向量a,a×a=0

对于向量a和向量b:

a和b的外积公式为:

其中:

根据i、j、k间关系,有:

向量外积的性质

a × b = -b × a. (反称性)

(λa + μb) × c = λ(a ×c) + μ(b ×c). (线性)

向量外积的几何意义

在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。

在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

在二维空间中,外积还有另外一个几何意义就是:|a×b|在数值上等于由向量a和向量b构成的平行四边形的面积。

—THE END—

一个专注于计算机视觉与机器学习的公众号,努力将分享变成一种习惯!

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:计算机视觉与机器学习
0

参与评论

登录后参与讨论 0/1000