未来10年这九大领域材料将迎来爆发需求!近年来我国推出的新材料发展政策汇总

橡胶小站 2022-01-15

新材料新能源新材料

6864 字丨阅读本文需 16 分钟

美国国家科学院、工程院和医学科学院发布了针对材料研究的第三次十年调查——《材料研究前沿:十年调查》报告。该报告主要评估了过去十年中材料研究领域的进展和成就,确定了2020-2030年材料研究的机遇、挑战和新方向,并提出了应对这些挑战的建议。

未来10年材料研究的九大机遇

报告指出,发达国家和发展中国家在智能制造和材料科学等领域的竞争将在未来十年内加剧。随着美国在数字和信息时代的发展以及面临的全球挑战,材料研究对美国的新兴技术、国家需求和科学的影响将更加重要。《材料研究前沿:十年调查》报告发布了未来10年材料研究的机遇,主要包括九大领域:

1 金属

2020-2030年,金属和合金领域的基础研究将继续推动新科技革命和对材料行为的更深入理解,从而产生新的材料设备和系统。未来十年有前景的研究领域包括:

①迄今尚无法实现的在相同长度和时间尺度上进行耦合实验和计算模拟研究;

②原位/操作实验表征数据的实时分析;

③加工方法和材料组分创新,以实现下一代高性能轻质合金、超高强度钢和耐火合金,以及多功能高级建筑材料系统的设计和制造;

④理解多相高熵合金的固溶效应,并通过开发可靠的实验和计算热力学数据库创建在常规合金中不可能出现的微结构;

⑤通过实验和建模进一步理解纳米孪晶材料中的变形机制、分解应力的作用、微观结构演变的过程和机制。

2 陶瓷、玻璃、复合材料和混合材料

陶瓷和玻璃研究领域的新机遇包括:

①将缺陷作为材料设计的新维度,理解晶界相演化与晶相演变,确定制造陶瓷的节能工艺,生产更致密和超高温的陶瓷,探索冷烧结技术产生的过渡液相致密化的基本机制。

②玻璃将作为储能和非线性光学器件的固体电解质,广泛应用于储能和量子通信,研究的热点材料包括绝缘体结构上硅、III-V材料、具有飞秒激光写入特征的硅晶片、非线性光学材料。

复合材料和混合材料研究领域的新机遇包括:

①在聚合物树脂基材料和高性能纤维增强材料的成分组成上进行创新,使其具有更强的定制性和多功能性;

②开发可以快速评估和准确预测复合材料的复杂行为的分析和预测工具、多尺度建模工具套件;

③加强多维性能增强及梯度/形态关系领域的制造科学研究。钙钛矿材料未来的潜在研究方向是基于甲基铵的钙钛矿太阳能电池的稳定性以及有毒元素的替代研究。

聚合物/纳米颗粒混合材料和纳米复合材料未来的研究重点是研究外部场(电、磁)对活性纳米粒子组装过程的影响。研究具有分布式驱动性能的软质和硬质复合材料,这是制备多材料机器人的理想材料。

3 半导体及其它电子材料

半导体及其它电子材料未来的工作重点将转向日益复杂的单片集成器件、功能更强大的微处理器以及充分利用三维布局的芯片,这需要研发新材料,以用于结合存储器和逻辑功能的新设备、能执行机器学习的低能耗架构的设备、能执行与传统计算机逻辑和架构截然不同的算法的设备。

器件小型化和超越小型化方面的研究重点是提升极紫外(EUV)光刻的制造能力和薄膜压电材料性能。金属微机电系统合金的沉积技术和成形技术的发展有望实现物联网。下一代信息和能源系统将需要能提供更高功率密度、更高效率和更小占位面积的新型电子材料和器件。集成和封装的变化以及场效应晶体管、自旋电子器件和光子器件等新器件的出现,需要研发新材料来解决互连中出现的新限制。

4 量子材料

量子材料包括超导体、磁性材料、二维材料和拓扑材料等,有望实现变革性的未来应用,涵盖计算、数据存储、通信、传感和其他新兴技术领域。

超导体方面的研究前沿是发现新材料、制备单晶、了解材料的分层结构及功能组件,研究重点包括研发可以预测新材料结构及性能的理论/计算/实验集成的工具;发现和理解新型超导材料,推动相干性和拓扑保护研究发展,进一步理解与更广泛量子信息科学相关的物质。

磁性材料可能会出现“磁振子玻色爱因斯坦凝聚”等新集体自旋模式,非铁金属制备的反铁磁体将成为未来自旋动力学领域的重点研究方向。

二维材料的重点研究方向包括:高质量二维材料及其多层异质结构的可控增长、异质结构和集成装置的界面(粘附和摩擦)力学、过渡金属二硫化物的低温合成等。

在拓扑材料方面,机械超材料可能是新的重要研究方向,其具有负泊松比、负压缩性和声子带隙等新的机械性能。

5 聚合物、生物材料和其他软物质

聚合物将在环境、能源和自然资源应用、通信和信息、健康等领域发挥重要作用。

(1)在环境领域,聚合物应用的目标是以有效和可持续的方式使用原料和聚合物产品,研究方向包括:

①研究被忽视的原材料(如农业、工业或人类活动产生的废物,其他含碳或硅的物质)使其形成有用的聚合物材料;

②将自修复材料市场化以提高其寿命、耐用性和回收利用;

③加强分离技术或其他物理过程的研发以实现混合塑料回收。

(2)在能源和自然资源应用领域,研究方向包括:

①提高能量存储系统的安全性和效率,包括固体电解质、全有机电池和用于液流电池的氧化还原聚合物;

②开发用于能量转换的聚合物,包括有机光伏和LED、薄膜晶体管、热电材料、导致柔性和可穿戴系统;

③开发用于能量-水联结的聚合物,如膜和抗污染材料;

④提高能源效率及能运输清洁水的智能建筑材料;

⑤实施和整合绿色化学和工程原理、生命周期/可持续性思想,设计开发商品和先进聚合物技术。

(3)在通信和信息领域,研究方向包括:

①在聚合物和有机半导体中,提高器件中电荷传输的电荷载流子迁移率;

②在光电器件中,设计和开发考虑了结构/性质/工艺之间关系的半导体有机和聚合物材料;

③数据库的开发和使用。

(4)在健康领域,研究方向包括:

①提升基于聚合物的纳米材料的设计,扩展至免疫工程等新应用;

②开发能进一步控制微纳结构以及提高设备和植入物的定制、一次成型和现场制造可能性的增材制造技术;

③发展基于聚合物的组织工程以减少动物模型在药物测试和材料测试中的使用。

(5)在基础聚合物科学领域,研究方向包括:

①在多个尺度范围内研究聚合物的合成、结构控制、性质表征、动态响应等;

②建造和集成能力更强、更易于获取使用权的先进仪器;

③通过联合创新计划来打破实验至上和理论至上两类研究队伍之间的认知障碍;

④开发可获得、可扩展、同时具有更绿色生命周期的聚合物。

生物材料的进一步发展需要先进的合成方法、新颖的表征工具及先进的计算能力。未来的研究方向包括研究软物质的自主行为以及掌握具有与肌肉骨骼组织相当性质和功能的合成材料的制造方法。

未来无机生物材料的重要研究方向包含生物金属的金属材料和陶瓷生物材料、用无机粉末的增材制造技术、生物分子材料性能的提升及糖化学。

软生物材料的重要方向包括超分子组件中的结构控制、水凝胶材料中水的组织和动力学、纳米结构内多个生物信号的精确空间定位方法。

6 结构化材料和超材料

结构化材料具有量身定制的材料特性和响应,使用结构化材料进行轻量化,可以提高能效、有效负载能力和生命周期性能以及生活质量。未来的研究方向包括开发用于解耦和独立优化特性的稳健方法,创建结构化多材料系统等。

超材料是设计出来的具有特定功能(磁、电、振动、机械等)响应的结构化材料,这些功能一般在自然界不存在。超材料的未来研究方向包括:制造用于光子器件的纳米级结构,控制电磁相位匹配的非线性设计,设计能产生负折射率的非电子材料,减少电子跃迁的固有损失。

7 能源材料、催化材料和极端环境材料

能源材料的研究方向包括:持续研发非晶硅、有机光伏、钙钛矿材料等太阳能转换为电能的材料,开发新的发光材料,研发低功耗电子器件,开发用于电阻切换的新材料以促进神经形态计算发展。

催化材料的研究方向包括:改良催化材料的理论预测,高催化性能无机核/壳纳米颗粒的合成,高效催化剂适合工业生产及应用的可扩展合成方案,催化反应中助催化剂在活性位场上的选择性沉积,二维材料催化剂的研究。

极端环境材料是指在各种极端操作环境下能符合条件地运行的高性能材料,研究方向包括:

①基于科学的设计开发下一代极端环境材料,如利用对材料中与温度相关的纳米级变形机制的理解来改进合金的设计,利用对腐蚀机理的科学理解来设计新的耐腐蚀材料;

②理解极端条件下材料性能极限和基本退化机理。

8 水、可持续性和洁净技术中的材料研究

碳捕集和储存的材料研究的机遇包括:基于溶剂、吸附剂和膜材料的碳捕集,金属有机框架等新型碳捕集材料,电化学捕集,通过地质材料进行碳封存。

洁净水的材料问题涉及膜、吸附剂、催化剂和地下地质构造中的界面材料科学现象,需要开发新材料、新表征方法和新界面化学品。

可再生能源储存方面的材料研究基于:研发多价离子导体和新的电池材料以提高锂离子电池能量密度,研发高能量密度储氢的新材料以实现水分解/燃料电池能量系统。

聚合物材料为可持续清洁技术领域提供独特的机遇和挑战,未来研究方向包括:利用可持续材料制备新塑料的方法,高度天然丰富的聚合物(如纤维素)的有效加工方式,稀土的高效使用、非稀土替代品的寻找和制备,稀土材料的回收和再利用,用于先进燃料电池的非铂催化剂。

9 移动、储存、泵送和管理热能的材料

热管理已成为从电池到高超音速飞机等诸多技术中最重要的方面之一,因为在高需求的设备和应用中,效率的微小提高会对能源的使用产生重大影响,需要加强能存储、转换、泵送和管理热能材料的开发。研究方向包括:

①开发更稳定和耐腐蚀的材料,或开发具有较大熔化热变化的新型相变材料,以提高太阳能热存储效率;

②开发新的热电材料,聚焦能量色散关系明显偏离传统谱带的固体材料;

③通过外力改变热特性或研究相变,开发新的有源热材料。

新材料产业发展的技术路径与政策重点

由于产业上下游环节多,技术复杂性高,具有很大的不确定性,对政策依赖性较强。因此,新材料产业发展必须依靠体制机制创新,进一步明确创新政策转型的重点。

(一)新材料产业发展的三种技术路径

供给引领下的前沿突破。技术组合是前沿材料技术的潜在来源,需要多学科、多技术领域深度融合,快速实现技术经验积累和重大理论突破。对于前沿突破形成的技术创新,主要基于新材料基本属性改变或衍生属性拓展,更多依靠产学研深度合作,促进新材料技术创新不同要素的整合。这种模式主要适用于代表材料科技发展方向、符合材料交叉颠覆性创新、具有广阔市场前景的新材料,具有“科技引领”特征,包括超导材料、智能仿生材料、石墨烯材料等。

供需驱动下的快速迭代。技术迭代是新材料更新升级的关键,通常以改善材料性能、缩短研发周期、加速工程化应用的方式实现。对于快速迭代形成的技术创新,仅针对新材料的研发验证和试验数据的预测模拟,并不影响材料自身属性,通过构建新材料模拟、研发、试验大数据平台,运用计算材料学和可共享材料数据库加速新材料工程化应用。这种模式主要适用于材料基因组技术,以及轻量、高温、高温超导、热电、磁性及热磁、相变记忆存储等高性能合金材料。

需求牵引下的融合创新。技术牵引主要来自军用和民用市场需求,以及长期以来的实践经验,更容易伴随在知识交换和市场应用中产生。对于需求牵引形成的技术创新,大部分是根据新材料性能需求进行反向设计,通过新材料研发先期导入,将上下游企业紧密联系在一起,以“军转民”“民参军”等方式,实现新材料研发设计与工程应用的有机统一、军事技术和民用技术的深度融合。这种模式具有“一需多材”特征,包括先进半导体材料、新型显示材料、新能源材料、高端装备特种合金,以及人工晶体、生物医用材料等。

(二)当前新材料产业发展的制约瓶颈

在前沿突破上,由于缺乏先导性技术支撑,我国新材料发展起步晚,多方力量分散投入、共性技术供给不足等问题十分突出。材料领域国家重点实验室之间以及与生命、能源、信息等领域实验室之间交叉不足,缺乏有效的竞争机制。

在技术迭代上,大多数行业没有专门的产业共性技术研发机构,新材料产品成套技术不完备。我国新材料还没有形成大批具有自主知识产权的材料牌号与体系,缺乏符合行业标准的新材料结构设计/制造/评价共享数据库。

在融合创新上,生产应用结合不紧密导致有效应用牵引不足。材料的研发生产与设计、下游应用相脱节,导致“有材不好用”。还有部分性能优异的材料,由于尚未经过长时间的应用验证和资质认证,导致“好材不敢用”。

(三)未来新材料产业创新政策的重点

从整体视角看,要处理好材料科技与其他科技领域的关系。相比其他科技领域,新材料始终强调应用导向,而这种应用是基于产业链带动形成工艺参数反馈,进而促进材料科技的新突破。因此,应从更广范围考虑科技协同创新体系构建,包括前沿技术追赶、科技投入产出、产学研分工合作等方面政策转型,促进“一代装备、一代材料”向“一代材料、一代装备”转变。

从关键机制看,要处理好研发投入与组织方式之间的关系。对于新材料技术而言,不同模式下的投入重点及组织方式也有所差异,无论哪种技术创新模式,目前大多数仍以部门条块资金投入为主,多头指挥的组织方式不利于新材料研发的持续投入和集中攻关,即使是需求牵引的技术创新,企业决策话语权也很有限,尽量避免多方力量分散减少投入的有效性。

从激励导向看,要处理好不同分工链条下人员激励的关系。正确引导各类研究人员开展科研生产活动,让不同分工链条上的研究人员实现知识分享,推动材料技术从实验室不断走向市场。只有结构设计、表征评价、服役测试等技术进步才能真正支撑新材料的研发生产,而其中研究人员的精力投入与绩效考核存在较大差异,并不是“一刀切”的注重论文发表、专利申请。

加快推动新材料产业发展的政策建议

推动新材料产业高质量发展,必须结合不同材料的技术路线特点,着力打通从基础研究到应用研究的创新全链条,重点在科研投入机制、研究组织方式、成果应用导向、人才评价考核等方面完善创新体制机制,充分发挥政策的引领作用和协同效应。

第一,完善新材料投入参与机制,推进创新链各环节深度融合。一方面,充分发挥政府先导作用。对于关键战略材料和前沿新材料领域,应从国家层面加强统筹规划,整合分散在各部门的科技专项经费,重点支持新材料研发与先进制造紧密结合、前沿新材料的示范应用项目,集中力量突破先进核心工程化工艺技术制约,提升关键战略材料产业共性技术创新能力。结合“首台(套)”等政策,通过政府采购、军方采购等方式构建运行高效的产用结合机制。另一方面,更加注重市场引导作用。对于技术成熟度较高、应用牵引较强的基础材料和关键战略材料领域,应更多采取产学研合作型、企业联盟型模式,推动建立以应用企业投入为主的研发机制,实现先期介入、精准研发,精准对接应用。

第二,健全新材料产学研用组织机制,激发“研发—应用—反馈—再研发”内生动力。适时调整材料领域国家重点实验室布局,探索建立新材料国家重点实验室①协同创新联合体制度,特别是在材料与医学和生命科学、能源和信息科学、制造科学等交叉前沿领域加强共性技术攻关,推动联合体内重要科研成果共享、业绩考核互认,将之前的个体竞争性评估变革为对协同创新联合体贡献的评估。抓住“一需多材”和“一材多用”两头,更加注重科技成果后端转化,新材料产业组织体系应坚持需求导向原则,同时为再研发服务。比如,可以在重点新材料领域建立产业联盟,支持产业集聚显著、上下游产业链完善的地区建立新材料产业技术研究院。对于面向民用和军用两类需求的新材料技术,可以采用军民结合方式,推动先进军用材料民用化及民用材料高端化,加速新材料技术推广应用进程。

第三,夯实新材料设备数据共享平台,以此带动其他科技领域和相关产业链协同发展。优先在新能源材料、生物医用材料、先进复合材料等国家战略领域推动上下游产业协同创新。建设参数数据库平台、资源共享平台,推进企业、科研院所数据、人才、设备仪器的开放共享。推动形成以行业协会为主导的新材料标准体系,面向国际市场建立高性能的技术标准和行业规范。加强新材料专利申请的评估审核,提高高性能复合材料及前沿新材料等高附加值领域的专利申请数量,注重专利直接转让与专利资本化转化相结合。针对关键战略材料和前沿新材料,通过政策引导避免热门产业领域恶性竞争,着力扭转低端产品过度集中、高端产品依赖进口的结构性矛盾。依托中小企业精细化加工生产的特点,培育新材料细分领域“隐形冠军”,让中小企业在细分领域、小批量多品种领域发挥作用。

第四,建立人才竞争择优、有序流动机制,以创新质量、综合贡献度、绩效分类评价创新人才。要抢抓全球人才流动的有利机遇,以优化人才结构、提升人才质量为重点,强化学科需求和应用导向,进一步健全人才分类评价政策体系,培养造就一批“高精尖”人才队伍,重点关注以下几类创新人才:

一是注重对多学科融合科研人员的培养,强化数字技术对新材料研发的推动作用。

二是注重对产业共性技术研发团队的打造,鼓励各类研发人员深入交流与知识分享。

三是注重对科技成果转化人员的激励,突出材料技术的产业化应用。

四是注重对细分行业“隐形冠军”人才的挖掘,着力在关键工艺技术、特殊材料配套和零部件领域有所突破。

在此基础上,逐步规范符合各类人才特点的激励政策,赋予科研院所和科研团队更大的自主权,包括经费使用、人才选聘、技术路线等,切实营造有利于创新创业的人才发展环境。

我国新材料发展相关政策汇总

(1)国家发展改革委、商务部发布《鼓励外商投资产业目录(2019年版)》,重点提及的化学原料和化学制品制造业包括:差别化、功能性聚酯(PET);聚甲醛;聚苯硫醚;聚醚醚酮;聚酰亚胺;聚砜;聚醚砜;聚芳酯(PAR);聚苯醚;聚对 苯二甲酸丁二醇酯(PBT);聚酰胺(PA)及其改性材料;液晶聚合物等

(2)国家发改委《增强制造业核心竞争力三年行动计划(2018-2020年)》重点化工新材料关键技术产业化项目包括:聚苯硫醚;聚苯醚;芳族酮聚合物(聚醚醚酮、聚醚酮、聚醚酮酮)、聚芳醚醚腈;聚苯并咪唑;聚芳酰胺;聚芳醚;热致液晶聚合物;新型可降解塑料等。

(3)中国石化联合会《石油和化学工业“十三五”发展规划指南》将高分子材料作为战略新兴产业列为优先发展的领域,明确高分子材料“十三五”发展的目的是:以提高自主创新能力为核心,以树脂专用料、工程塑料、新型功能材料、高性能结构材料和先进复合材料为发展重点,开发工程塑料、改性树脂、高端热固性树脂及其树脂基复合材料,以及可降解塑料等新材料制备技术。

(4)中国石油和化学工业联合会关于““十四五”化工新材料产业发展的战略和任务”的重点工作指导:开发5G通信基站用核心覆铜板用树脂材料(LCP、PI、环氧树脂等);聚砜、聚苯砜、聚醚醚酮、液晶聚合物等高性能工程塑料。

此外,我国新材料产业相关政策规划,还包括:

《中国制造2025》;

《新材料产业发展指南》将为“十四五”期间新材料产业发展指明重点方向。

文章来源:新能源前沿,前沿材料,国家智库

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:橡胶小站
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...