首批风电场设备迈入“退休年龄”,风电退役带来风电设备回收新风口

新能源风电观察 2022-03-23

能源新能源环境保护

3214 字丨阅读本文需 7 分钟

随着我国最早一批风电场设计运行年限的临近,风电退役问题成为行业面临的主要问题之一。

据统计,截至2005年年底,全国共计运行1250MW、1827台风电机组,按风电机组设计寿命20年测算,至“十四五”末期,即2025年年底,全国将有同等规模风电场、同等数量的风电机组面临退役。

从2006年开始(暨《可在生能源法》正式施行),我国风电累计装机基本逐年翻倍。因此,如果认为“十四五”是风机退役的起始,“十五五”则是风机退役问题的第一个高峰。截至2010年年底,全国共计运行44734MW、34483台风电机组,按风电机组设计寿命20年测算,至“十五五”末期2030年年底全国将有同等规模风电场、同等数量的风电机组面临退役。

风电项目退役

退役是指风电机组到达设计寿命前或设计寿命时,采取一次性解列拆除全部风电机组及配套设施,并对场址进行植被恢复,原场址不再建设新的风电项目。

退役的原因主要包括风电机组实际发电效率低下,发电能力差;风电机组设计制造技术不足,机组环境适应能力差,造成风电机组故可靠性低,性能无法满足安全要求,存在较大的安全隐患;风电机组技术指标不能满足电网要求;风电机组的零部件采购困难,运维难度大,导致风电机组运维成本高或无法进行运维;风电机组到达设计寿命时,存在严重影响机组或风电场的结构完整性或者预计会导致机组损坏的缺陷,且难以进行技改或需要难以承受的经济成本进行技改;因其他原因,项目业主自行选择风电机组退役;风电机组涉及环保、林草、军事等因素被要求退役;风电机组未经审批超期运行。

风电机组退役按照申请退役时的服役时间可以分为提前退役和直接退役。

提前退役是指风电机组到达设计寿命前采取一次性解列拆除全部风电机组及配套设施,并对场址进行植被恢复,原场址不再建设新的风电项目。

直接退役是指风电机组到达设计寿命时采取一次性解列拆除全部风电机组及配套设施,并对场址进行植被恢复,原场址不再建设新的风电项目。

风电技术难点

风电机组退役的技术难点主要集中在风电机组及配套设施的回收处理,目前尚无相关标准或技术规范要求。

风电机组退役后,需要采取一定的措施对包括对基础、塔架、整机、叶片、集电线路、电气设备、升压站建筑进行处理。基础中的混凝土一般不能再次利用,可将其破碎加工后,重新用于混凝土材料的生产,减轻废弃混凝土对环境的影响,但若考虑回收的经济性,一般直接就地废弃。基础中的钢材、塔筒可作为废品报废处理,回收残值或经过评估之后二次利用。整机中的发电机、齿轮箱、主轴和电气设备等可采用以旧换新、二次维修使用的方式处理或作为废品报废处理,回收残值。主机中的其他金属材料、集电线路的电缆和导线可作为废品报废处理,回收残值或经过评估之后二次利用。除此之外,蓄电池等电子元器件及废旧油品、油脂属危险废物,需要项目业主委托给有处理资质企业回收处理。升压站建筑设施依据具体情形拆除或保留。

在整个风电机组中,叶片是处理难度最大的部件。叶片主体材料为聚合物基复合材料,俗称玻璃钢,是一种热固性复合材料,无法简单进行再利用。叶片基体材料为环氧树脂和玻璃纤维,环氧树脂固化后无法二次利用,玻璃纤维固化在纤维体中,回收难度也极大。

结合国内外研究及案例,对退役叶片的处置主要包括堆放、掩埋、回收再利用三种情况。玻璃钢等材料自然降解难度大、周期长、占地面广,通过堆放和掩埋方式处理叶片会造成大量白色污染,显然不符合我国日趋严厉的环保政策要求。相对而言,回收再利用是一种更加环保的处置方式。叶片的回收利用主要有三种方式,包括物理回收、化学回收和能量回收。

仅就技术层面而言,废旧叶片的处置已经不存在太多的障碍。目前的主要问题是上述技术手段的经济性还有待提高以及能否大批量处理叶片且不会造成环境影响的问题。欧洲风能协会、欧洲化学工业理事会和欧洲复合材料工业协会发布的《加速风机叶片循环》报告中也指出,现有风机叶片循环利用技术多种多样,但这些解决方案尚未具备产业规模和经济竞争力,应对风机叶片回收的最佳策略是将设计、测试、维护、升级和适当的回收技术结合起来,以确保其在整个使用周期内发挥最大价值。

欧洲走在前列

面对风机叶片回收难题,不仅中国尚未形成完整的产业链,其对于依赖可再生能源的各个国家都是亟待解决的问题。

欧洲的风电产业发展相对成熟,已开始探索叶片回收的解决方案,或许可以为中国提供经验借鉴。

政策方面,欧洲风能协会早前呼吁,在2025年之前全面禁止欧洲范围内对退役风机叶片进行填埋处理,以杜绝产生相应的环境问题,目前,德国、奥地利、荷兰和芬兰已经颁布并实施了垃圾填埋禁令。

欧美龙头风电企业迅速对此做出响应,承诺100%回收并循环利用退役叶片,并开启不同回收技术路径的研究。例如GE计划在2030年前投产零废风机;丹麦公司沃旭能源宣布禁止将风机叶片填埋处理;挪威海上风电公司Aker Offshore Wind与英国学界形成联盟开展玻璃钢回收利用商业化等课题。

目前风机叶片回收研究主要集中在三个方向:物理法拆解粉碎再利用,化学法回收降解,以及利用创新材料制造100%可回收叶片。

物理回收法是将叶片简单拆解之后用于市政建设,或在粉碎后混入水泥或其他建筑材料。现阶段物理法技术相对成熟,能够快速被应用于待回收组件,虽然市政建设需求量小,但粉碎后的叶片作为增强材料延长了其生命周期,实现跨领域的资源化利用。

相比之下,化学回收法与100%可回收创新材料被认为是更具潜力的方向。

化学回收法通过对复合材料拆链分解,分别提取回收纤维与环氧树脂,捕捉其作为原材料的剩余价值。维斯塔斯在2021年聚集产业与学界领导,开启了CETEC项目(热固性环氧树脂复合材料循环经济),旨在创造全新的可循环价值链。维斯塔斯目标在三年内将CETEC技术全面推向市场,不但将目光放在风机叶片回收上,更是着眼将技术应用于汽车和航空等其他依靠热固性复合材料的行业。

与此同时,西门子歌美飒在2021年9月发布了全球首款100%可回收叶片。该叶片采用了特制的工艺树脂,既保留了轻量高强度的结构,又能在叶片退役后与其他原料进行高效分离。叶片计划应用于海上风电,西门子歌美飒也已经和长期合作的三家能源企业达成协议,将在今年正式将可回收叶片投入使用。不过,可回收叶片是否能批量化生产及其运行表现还有待观察。

具有商业化潜力的解决方案正逐步推向市场,但即使是走在前面的欧洲,实现回收规模化仍有很长的路要走。

中国按下加速键

中国的风机设备等新型废弃物回收起步较晚,随着近年来退役量激增,特别是中国提出双碳目标之后,回收问题才逐渐被重视。一个成熟的回收市场,不仅是促进风电产业绿色健康发展的必要基础,也是全社会对可再生能源产业快速发展下的新期待。

2021年10月,国务院印发的《2030年前碳达峰行动方案》中多次提及资源回收,其中提出“完善废旧物资回收网络,推行‘互联网+’回收模式;推进退役动力电池、光伏组件、风电机组叶片等新型产业废物循环利用”。

2021年12月,国家能源局在《风电场改造升级和退役管理办法》征求意见稿中主要对风电场改造升级提出指导,其中第五章着重规范了风机组件的循环利用和处置,旨在构建风电产业循环利用新业态。

2022年2月,国家工信部、生态环境部等八个部委联合印发了《加快推动工业资源综合利用实施方案》,提出推动废旧风电叶片等新型固废综合利用技术研发及产业化应用,未来的的政策手段可以包括补贴或纳税减免。我们期待看到更加明确的落地机制,从上游退役叶片处置到下游回收材料采购,助推市场形成完善的产业生态。

另外,政策可以对设备制造企业提出更高要求,例如欧盟《废弃电气和电子设备指令》将光伏垃圾纳入国家法律管理范围中,要求生产商承担垃圾处理的经济责任。

在政策出台的同时,风电行业龙头企业正逐步布局回收领域。2021年7月,由鉴衡认证中心、金风科技等公司发起的风电叶片绿色回收与应用联合体正式成立,这无疑是业界对于探索回收解决方案迈出的重要一步。

中国风电回收市场尚处于起步阶段,在风机批量化退役的时间节点来临之前,市场需要对于回收问题建立认知,探索可以规模化的解决方案。从行业层面的规范,到企业层面的技术革新,再到风电场业主对回收需求的对接,都是不可或缺的环节。

我们可以抱着更乐观的眼光看待风电设备回收市场。随着回收规模的增长,研发、运输、处理等成本将会下降,更精细更科学的回收技术将会出现,也会有更多值得探索的具有经济性且可规模化的商业模式。无论对风电龙头、还是创新企业来说,加速进军风机叶片回收这片蓝海,都是对未来增长空间的提前布局。

本文来源:能源杂志,财经十一人,国际能源小数据

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:新能源风电观察
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...