香橙会氢能沙龙文字实录:新技术路线即将打开电解槽降本增效空间

香橙会 2022-03-31

电解槽pem新能源

2932 字丨阅读本文需 9 分钟

《氢能产业发展中长期规划(2021-2035年)》发布后,全社会对氢储能的期待进一步提升,同时对产业的认知需求也更为迫切。3月25日,香橙会研究院邀请三家电解水制氢设备创业企业开展线上讨论,以下是整场研讨会实录。

嘉宾分享前,香橙会研究院研究总监黄奕博士对国内外氢储能行业发展情况做了分享。

1

氢储能行业格局:国外在运营9座,我国7座

氢能作为一种媒介,通过“可再生能源发电-水电解制氢-氢燃料电池发电”的能量转换过程,能有效解决可再生能源的波动性和间歇性,起到稳定电网的作用。

水电解制氢与氢燃料电池互为逆反应,与氢燃料电池结构完全一致,关键零部件都是双极板、膜电极等,差异主要在体现在材料体系,尤其是PEM电解槽。基于这种特性的便利,不少燃料电池企业正在将业务范畴延伸至PEM电解槽。

氢储能具备规模大、周期长、可跨季节储能等突出优势,将与电化学储能互补,共同构成两种主要储能方式。

据香橙会研究院统计,截止至2021年底,主要发达国家在运营氢储能设施已有9座,电解槽装机量合计17.33MW。其中,最大的两处均在德国,电解槽装机量为6,000kW;另有两处氢储能设施在建,电解槽装机量合计2.8MW。

我国在建和示范运行的氢储能设施共有7座。其中,位于张家口在建的“张家口200MW/800MWh氢储能发电项目”是目前全球规模最大的氢储能项目,将安装80套5,000kW电解槽,项目建设期为2年,预计2023年投入运行。

2

氢克新能源:PEM电解槽气体扩散层和催化剂上的创新

氢克新能源是一家PEM电解槽领域的新兵,创始团队聚集了催化化学、流体力学、工业设计、工艺工程、供应链管理等专业领域优秀人士,人均拥有10年以上丰富产业或研发经验,各学科充分融合。

传统钛纤维毡结构气体扩散层内部孔隙结构复杂,没有规律性,导致气体和水在其内部的流体阻力较大,流体通过性较差,影响了整个电解反应的效率;钛纤维毡表面孔隙不规则,导致在其与膜电极表面催化剂层的接触为线接触,接触效率低,活性点位少,降低了析氧催化反应的速度;钛纤维毡表面孔隙较大且孔径大小不一、为了防止质子交换膜在阴阳极高压差下产生剪切破坏,需使用比孔径更大的厚度的质子交换膜,膜越厚,内阻也越大。

针对以上问题,氢克创业团队提出了高有序化直通孔结构阳极气体扩散层结构,可低成本规模化量产。

高有序化直通孔结构气体扩散层示意图

氢克的首创方法做出钛板厚度200~300微米,它的孔隙的密度可以达到每平方米1亿个以上,具有流体通过性优、活性点位多、过电势低等优点。新型气体扩散层大幅增强PEM膜的抗剪应力能力,同等压力差下,可使用更薄的PEM膜。

PEM电解槽阳极反应环境苛刻,强酸、强腐蚀,对阳极析氧催化剂酸稳定性要求极高。析氧反应是PEM电解水的瓶颈反应,析氧过电势是影响反应效率的最主要因素,要求阳极催化剂具有较高的催化活性。铱金属产量少,价格贵。依赖传统二氧化铱催化剂,预计2030年装机30GW电解槽时需要15到30吨铱,是目前年产量的2-4倍,低铱含量催化剂是必然方向。

氢克团队创新性地开发了低铱高效析氧催化剂,具备量产能力。

降本增效之路是PEM电解槽研发的永恒话题。电解槽电堆研发方向是降低每万小时寿命下每瓦成本(元/W万小时),也即单位面积电流密度越高、电堆寿命越长、各组件成本越低,电解槽的整体成本越低。

随着电流密度的提高,单位面积单片功率会提高,预计未来五年,功率密度将从现在真实工况下的2-3W/cm2左右提高到6W/cm2甚至以上。随着催化剂和双极板、气扩层工艺的提升,预计电堆的寿命将提高6万小时以上。最终,随着产业化应用而进行规模化量产,将引导电堆成本大规模降低。

3

上海治臻:PEM电解槽双极板上的创新

治臻本身是以燃料电池双极板的设计、制备进入氢能领域。在六年与行业成长的岁月中,治臻逐步落成了“一个中心+一个基地”产业布局。

其中,临港基地作为研发中心,形成了面向氢能产业“产品构型设计”、“新型材料开发”、“精密工艺论证”及“装备自主制造”的四大技术平台。

常熟量产基地以工业4.0为建设目标,建成了“自动化柔性制造系统”、“工艺-质量信息自主交付系统”及“基于数据库比对的质量控制系统”,实现批量化、一致性制造。

今后,治臻也将基于上述平台,继续深耕氢能领域,为氢能新型产品研发及量产做出贡献。

PEM电解槽运行电压高、环境酸度大、耐高压需求强,并且规模化应用成本需求日益凸显。其中,对于双极板而言,同样面临三大困境:

1)高电位涂层耐蚀性能差,耐高压密封泄露风险大,材料体系缺口明显

2)未突破冲压对偶结构设计,采用铣削、蚀刻制备,材料利用率低,成本高

3)电解槽运行压力、温度作用下机械结构稳定性差,影响安全运行

围绕上述材料需求,治臻开展了高硬度三元乙丙材料体系开发,并利用多道次、变截面构型设计实现高压密封;对于高电压下涂层因团聚丧失界面导电现象,引入钉扎型元素,形成合金化涂层,有效抑制高电位下涂层团聚现象,延长涂层使用寿命。

围绕上述构型设计,治臻通过“一板两场”结构设计,充分利用冲压工艺形成的对偶结构特点,实现电解槽极板薄板化,提升材料利用率的同时,显著降低工艺成本。

此外,治臻对于PEM电解槽工质、温度均匀性分布进行了系统化结构调整,提升了PEM电解槽使用效率及安全性。

治臻为PEM电解槽发展规划了两个方向。PEM电解槽大型化方向,主要解决稳定性及长寿命,将来用于兆瓦级制氢场合。这个过程中,治臻主要侧重极板-钛毡-CCM之间均匀传质的联合设计,以及表面涂层材料体系的耐久性提升。另一个方向就是小型化,面向氢健康等方向,主要提升安全性及反应效率,这个方向上,治臻通过新型密封材料体系设计及流场、钛毡等结构的有序化开发进行攻坚。

在常熟基地,公司正在建设一个“太阳能屋顶+PEM电解制氢”示范项目,产生的氢气可用于氢能AGV移栽车或氢能叉车,过程中产生的热能可以供给日常生活使用,这便构成了一个小型的“氢能社会”,实现整个过程无排放无污染的社会活动。

治臻还拥有独创密封材料杜绝外漏和串漏。

密封泄露途径有两个,一个是本体泄露,一个是界面泄露。对于材料本体泄露,治臻通过全碳链高分子材料体系开发,通过提升内部碳链排列密度,降低本体泄露风险。对于界面泄露,通过“多峰-变截面”结构设计,逐步卸载气体逃逸压力,提升了高压下界面密封的可靠性。

有关极板上贵金属的涂覆情况。高电压下涂层发生团聚行为,降低界面并联导电的能力,从而使得接触电阻上升。通过引入“钉扎型”元素,对本体导电薄膜形成钉扎、固定,有效减少导电材料的“自卷曲”效应,抑制高电位下涂层团聚现象,延长涂层使用寿命。

4

吉道能源:大规模+高效率+室外型”的电解槽研发制造

吉道能源致力于“大规模+高效率+室外型”的电解槽研发制造。电解槽单体达2000-5000 m3H2/h;电解效率80%,能耗4.4KWh/m3H2;在室外和高压环境下工作。

安全承压壳式单槽产能最大1500m3/h,压力2.5MPa,拥有多项国际领先关键指标。

1.室外安全承压壳式电解槽整套技术,开创绿色能源时代

2.大规模高压电解槽技术,单位设备投资可减少20%,直流能耗低于标准立方米氢气4.2千瓦时,显著优于国家大型电解槽的一级能效标准。

3.该设备将作为制氢储能电站,接入电网控制,实现一键启动、无人值守、远程监控、设备互联等功能。

4.多电解室环流分布技术,电解槽运行更平稳,系统动能减少10%

吉道能源的技术方案可以概括为以下几点:

1.零极间距减少电解室内阻距离;

2.接触电势消除:减少接触电势,提高电解效率;

3.流场分布优化:加速传质、环流分布技术;

4.电场分布优化:增加电流分布均匀度。

吉道能源的制造工艺有以下几个特色:

1、新型电解槽通过采用电解槽增压壳提供压力,对电解槽外壳作为压力设备制造简单,成本降低。

2、同时电解室结构圈承压作用消失,加工要求降低,便于作为标准器件,设计模具统一成型,加工方便省时,制造成本降低。

吉道能源项目团队提供一揽子绿氢应用技术、方案和装备(电解制氢、合成甲醇、液态阳光加氢站)。

到今年年底,吉道能源计划开发出2000方电解槽产品。

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:香橙会
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...