自带味道的氨能源,能成为氢能源2.0吗

全网综合能源 2022-04-06

氢能源能源新能源

3816 字丨阅读本文需 9 分钟

氨,分子式为NH3,0.771 kg/m³,常温下是一种无色气体,易挥发,可燃,其极具辨识度的强烈刺激性气味,哪怕不知其名的人也多少少有所体验——说到这里恐怕许多读者鼻腔中已经泛起一股难以言喻的“幻臭”。

氨对人类社会的运作至关重要,是世界上产量最高的无机化合物之一。2021年的合成氨年产量大约在1.8亿吨左右,其中约80%应用于化肥生产,其它则主要用于工业制冷剂以及生产多种工业原料。

虽说可燃,长期以来氨并没有被广泛视作一种可能的能源形式,与能源最大的关系也主要是作为氢能的载体。

但氨本身拥有用作能源的潜力,且在环保需求持续高涨的当下,也得到了来自能源产业的关注。尽管不及氢能那样在“碳中和”与“绿色经济”的未来规划中占据重要位置,部分能源行业参与者仍开始考虑越过将氨还原为氢这一步骤,直接尝试将氨作为能源大规模使用,甚至有观点称其为“氢能2.0”。

那么到底是什么原因,促使能源行业将部分注意力从氢转移至氨?氨作为一种潜在的绿色能源又具备哪些优点?其规模化之路上又有什么困难?本文将逐一解答。

氨能源是一种以氨为基础的新能源,旨在用无碳化合物代替化石燃料来减少排放,是一种清洁能源。氨的特点在于其可完全由可再生能源(如水、电、空气)生产,在内燃机燃烧的氨,没有硫氧化物、二氧化碳、颗粒物的排放, 氮氧化物也能通过广泛应用于柴油发动机尾气处理的SCR系统减排或移除。可以说氨是一种低碳、无污染、环境友好型能源。不仅如此,价格相对低廉,低空燃比,安全性高也是氨的特点。

根据2021年发布的《世界能源展望》,自前工业化时代以来,全球气温上升了1.1摄氏度,地球达到了一万一千多年来的气温峰值。按照这个速度,到2030年,全球气温升幅将超过1.5摄氏度,并在2100年达到2.6摄氏度,其后果不堪设想。化石燃料燃烧所产生的二氧化碳所占比重最大,是最主要的人为温室气体,如不尽快采取实质行动,大气中二氧化碳浓度将会超过450ppm的警戒值,到21世纪末全球温升将超过4摄氏度,对人类生存将构成重大威胁。同时随着人口增长和城镇化、工业化的快速发展,全球化石能源资源有限,开发成本不断增大,保障全球能源供应面临巨大压力。而我国国情多煤少油,煤炭发电占比居高不下,石油依存度不断上升,加快发展清洁能源成必然趋势。

如果真要寻求一艘“诺亚方舟”去承载“零碳社会”的千年梦想,神奇的“氨”就是这样的一种奇妙物质。氨是除氢以外最宜生产的可再生燃料,具有极其重要的战略资源价值。氨可由水中的氢和空气中的氮合成,并在氨燃料电池或氨内燃机或氧化燃烧时还原为水和空气。在目前普遍采用的工业化合成氨生产中,所需的氮可自空气中直接获得。而氢的来源则为天然气、煤炭、石油、生物质及水。随着未来天然气的供不应求,氢的来源势必渐以煤、生物质和水为主,并最终依赖生物质与水。制氨所需的能源也势必从目前的化石能源(包括石油、天然气、煤炭等)及物理能(包括光、水力、风力、温差、核变等)最终走向只依赖物理能(特别是自然能),必然走向风光核分布式制氨的光辉道路。

在2021中国汽车工程学会年会上,中国汽车工程学会理事长、中国工程院院士、清华大学教授李骏发表了题为《Autonomy 2.0与Ammonia=Hydrogen2.0》的主旨报告。他认为,全球已进入“氨=氢2.0”时代,氢能产业要准备向氨方向发展。李俊院士指出,氢动力重型商用车面临的挑战包括热管理、氢负荷、加氢时间、换氢站间距、加氢标准、氢成本等。那么,如何解决这些挑战,李俊院士表示,目前无碳燃料有氢和氨两种,将氢和氨融入新能源汽车可能是未来的一个重要方向。

使用氨气代替氢气作为燃料汽车的能量来源,一方面,氨基钠可以将氢气和氮气轻松地分离,成本很低,另一方面,氨气的储存运输更便利,氨不需要冷却到极端温度就可以液化,在常温下加压即可使其液化,所以运输和储存都更方便,不像氢气那样液化的难度更大。而且比液态氢具有更高的能量密度,液态氨的热值高达3195.0-3862.3千卡/立方米,看起来,它代替氢气是可行的。数据显示,全球合成氨年产量2亿吨,我国合成氨年产量5000-6000万吨,占全球产量的25-30%。全球氨联盟预测“氨是未来绿色能源的赢家”,是真正的零碳燃料,能量密度高,易液化,储运方便,基础设施完善。

好能源,坏能源

氢是好能源,甚至可能是最清洁的能源。其制备原理非常简单,工艺也有已经成熟的规模化生产技术(AEC,碱性电解),有在快速发展的下一代技术(PEM,质子交换膜电解;SOEC,固体氧化物电解),可以与风光电厂完美结合,就地解决消纳、储能等一系列高效利用绿电的问题。也就不奇怪,为何氢能在国家未来能源规划中占据如此地位了。

可氢也是一种坏能源,坏到当前产业面临的困难远比应用它带来的好处要多得多。首先氢是一种极难储存的物质,其临界温度极低,为-239.9℃(作为对比,氧气的临界温度为-118.95℃),而维持这种低温意味着很高的能耗,导致氢气目前只能依赖高压气体钢瓶这种相对低效的方式转运,运输成本居高不下。同时,氢作为自然界最轻的元素,其分子穿透力极强,很容易发生泄漏,且对金属物质还有一定的腐蚀性,对储氢罐与运输管道(特别是接缝位置)的材料选择提出了很高要求,而性能如此优秀的材料必然不会便宜,如何高效中长期储氢是行业的长期难题。氢气还是一种非常危险的物质,极端易燃易爆,而这搭配易泄露的特征,导致必须将安全标准维持在极高水平,而这又是一笔开支。

临界温度:每种物质的一个特定温度,即物质以液态形式出现的最高温度。在这个温度以上,无论怎样增大压强,气态物质不会液化。换言之, 临界温度越低,越难液化,储存难度就越大。

除了储运问题,氢能虽然单位质量的能量密度不错(高达142MJ/kg,标准煤为20.8MJ/kg),但单位体积的能量密度却十分糟糕,而作为一种密度极低的物质,这才是对氢更为重要的一项指标。液态氢的能量密度约为2.4千瓦时每升(汽油的能量密度为9千瓦时每升),而这已经是最为理想的数据,考虑到大部分情况下氢气并不能以液态方式转运,进一步降低了其经济效益[3]。

总的来说,氢能现阶段尚未解决基本的储运,而中长期的储存更是困难重重。当前的一些技术路线,包括甲醇、金属吸附等要么不具备规模化能力,要么极端不成熟,均不符合对氢能的长期规划。而这决定了无论氢能产业是否能解决生产成本的问题,氢能都不具备大规模推广的基本前提——没有低成本的可靠储运技术,大规模的氢能相关基建工程同样意义不大,至少经济性不高。

这就促使行业放宽视野,寻找一种和氢类似,制备工艺比较简单、生产过程碳排放低、效率可接受、副产物清洁,同时还要易储易运输的物质。

于是能源行业找上了氨。

很多好处

最基本的问题:氨是否具有作为一种绿色能源的潜质?答案是肯定的。

首先从氧化反应公式看,在恰当反应条件下,氨气燃烧的产物可以仅有氮气与水,与氢气同等清洁,完全具备作为绿色能源服务“碳中和”的潜力。

氨作为燃料的性能也属尚可。单位质量下氨的能量密度虽远不及氢,但其单位体积的能量密度则有3.5千瓦时每升,比液氢的2.4千瓦时每升高了近50%,优势非常明显[3]。而且氨燃料的辛烷值较高,抗爆性能较好,可以增加发动机的压缩比以提高输出功率,使得发动机的热效率提高到50%以上,是普通燃油汽车的2倍

合成氨最大的优点,是其远比氢要容易储存,常压下-33℃或常温下9个大气压即可使氨液化,且对储存容器的要求也不高。同时,氨作为人类制备规模最大的化合物之一,储运技术非常成熟,管道、铁路、驳船、船舶、公路拖车均可,对大规模兴建基础设施的需求并不强。以上正是氨被视作储氢关键技术的核心原因。总的来说相较于氢,大规模的应用氨至少在储运环节并没有太多麻烦。

氨的生产可以只依赖水、空气以及电力,这意味着理论上也存在和氢气同样清洁的制备方式,基本无碳排放的“绿氨”是可能的。理想中最为简单的一种绿氨生产模式,是将制氢站、合成氨工厂与可再生能源电厂整合,通过风光或其它形式的绿电电解水制氢,再用这一过程中生产出的绿氢进一步与空气中的氮气结合,继续使用绿电生产氨气。如此一来,就有望实现全流程的无排放氨生产,且同样可以解决新能源消纳难的问题。

一些问题

许多人可能会发现,本文从始至终,完全没有提及氨作为能源的经济性。这主要是因为,氨能源现阶段其实没有什么经济性可言。

首先是价格不具参考价值(而且吨价本就比原油贵)。“当前”的合成氨吨价完全是建立在“当前”的生产工艺与供需关系之上的,而我们在上文已经提到,哈勃-博施法会产生惊人的碳排放,不可能用于未来的绿氨大规模制备,但新的工艺距离成熟还有不小的距离,我们并不是非常清楚绿氨能实现什么水平的价格。这引出了一个不容忽视的风险,商业化的风险。

这并非危言耸听,因种种原因迟迟无法规模化的实例很是普遍。上文我们已经阐述了氢能源在规模化过程中遇到的巨大困难,之所以开发氨能源本身就是个很典型的案例。另一个例子则是以砷化镓太阳能电池为首的一众III-V族太阳能电池。这种材料由于极其优秀的光电转化效率以及其他性能,被广泛应用于空天设备(航天站、卫星等)与军用无人机这些成本非常不敏感的领域。光伏产业并非没有试图将其规模化,可由于无论如何也不能解决砷化镓的成本问题,如今针对这一材料的民用化进程已经停滞。而其他调整组分从材料层面降本的尝试,也由于各种原因举步维艰,特别是缺乏在效率上与传统硅晶电池竞争的能力而败下阵来。

商业化本身不是一种必然的承诺。哪怕是氨这样工业生产已经十分熟悉、久经考验的物质在换一种用法、换一个领域后,也需要重新考量其经济价值。

其次,当前的合成氨是典型的重资产行业,前期投入巨大且投资周期很长,这一点即使绿氨工艺得以大规模投产,也不太可能有根本性的变化,这给社会资本的接入带来了一定的困难。配套的绿氢工厂、储运设施、电站等等耗费甚巨的项目都不是社会资本能够独立解决的。同时,当前合成氨行业若想转型,相关设备的升级改造,研发支出同样会是巨大的开支,这些资金仅靠行业自行筹集也是个问题,而传统化工业对资本的吸引力一直以来都很堪忧。没钱就不能转型,不转型就更融不到资,这一困境在ESG大环境下的传统能源企业转型过程中,已经可以被十分明确的观察到。

换言之,若氨能源想要实现长足发展,来自国家顶层设计与配套政策的支持必不可少。构建一个友好的投资环境对产业发展升级,以及提高资本接入的意愿皆至关重要。

文章来源: 果壳硬科技,全国能源信息平台

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:全网综合能源
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...