多种技术争奇斗艳,IBC有望成为新的平台型技术

细说光伏 2022-05-27

电池电池技术新能源

3696 字丨阅读本文需 9 分钟

与PERC、TOPCon、HJT等技术通过改善太阳能电池的钝化效果来提高性能的思路不同,IBC技术则是将电池正面的电极栅线全部转移到电池背面,通过减少正面栅线对太阳光的遮挡从而获得较高的转换效率,可与TOPCon、HJT等技术叠加。

IBC作为一种电池结构上的创新,可与多种技术叠加,有望成为新的平台型技术。与PERC、TOPCon、HJT等技术通过改善太阳能电池的钝化效果来提高性能的思路不同,IBC技术则是将电池正面的电极栅线全部转移到电池背面,通过减少正面栅线对太阳光的遮挡从而获得较高的转换效率,是一种结构上的改变,可与TOPCon技术叠加成为TBC(POLY-IBC)电池,也可与HJT技术叠加成为HBC电池,与现有的产线与积累的技术有较好的兼容性。

IBC技术的制备工艺增量主要在于背面电极的构造,设备增量主要是激光设备。IBC技术的增量工艺步骤主要是掩膜、开槽、刻蚀以及PN区的制备,掩膜可以用PECVD或APCVD来完成,刻蚀用传统的湿法设备即可,PN区的制备用PECVD即可完成,主要的增量在于刻槽步骤,而激光设备是实现刻槽的主流技术。

TOPCon、HJT技术不断向前推进,客观上也有利于XBC技术的不断成熟与产业化。根据晶科官微22年1月的披露,安徽晶科能源一期8GW新型高效电池片实现贯通投产,主要生产高效N型TOPCon电池,目前晶科TOPCon电池平均量产效率在24.5%,最高效率已经达到25.4%;另据华晟官微22年3月信息,安徽华晟一期500MW异质结生产线已全部调试产能爬坡完毕,月平均效率24.6%-24.65%,二期2GW项目生产设备开始进场。光伏各种技术路线的融合趋势越来越明显,而IBC作为一种兼容性较高的技术,有望受益于各种技术路线的进步,产业化的前景预计将越来越明朗。

多种技术争奇斗艳,IBC有望成为新的平台型技术

硅基光伏电池历经三代变化,新的技术不断涌现推动光伏发电的性价比不断上升。光伏电池早期以BSF(Aluminium Back Surface Field,铝背场电池)为主要技术路线,该电池技术于1973年提出,其特点是采用铝背场钝化技术,理论转换效率上限约为20%;随着光伏产业对于发电效率的不懈追求以及PERC(Passivated Emitter and Rear Contact,发射极钝化和背面接触)技术的成熟,成本不断下降,光伏电池转向以PERC技术为主,该技术于1982年提出,其特点是采用氧化铝局部钝化技术,相较于BSF电池技术,PERC技术钝化效果更优,将电池的极限效率提升至23%左右。

随着PERC技术的成熟与不断挖潜,逐步逼近其转换效率的理论极限,业界开始寻求下一代技术,目前推进中的主流技术有TOPCon(Tunnel oxide passivated contact, 隧穿氧化层钝化接触)、HJT(Heterojunction with Intrinsic Thinfilm,异质结)和IBC(Interdigitated back contact,交叉背接触)等。TOPCon和HJT一般为采用了钝化接触技术的N型电池(也有技术采用P型硅片),不同点在于HJT是异质结类型的电池,是具有颠覆性的技术,对新进入厂商相对有利,TOPCon仍然是同质结电池,对存量的产线和技术积累较为友好,对行业内现有玩家较为有利。

IBC的提效降本则是另外一种思路,与TOPCon、HJT采用新的钝化接触结构来提高钝化效果从而提高转换效率的思路不同,IBC则是将电池正面的电极栅线全部转移到电池背面,通过减少栅线对阳光的遮挡来提高转换效率,主要通过结构的改变来提高转换效率,是一种较为纯粹的单面电池,这种结构可以与PERC、TOPCon、HJT、钙钛矿等多种技术叠加,因此有望成为新一代的平台型技术,与TOPCon技术的叠加被称为“TBC”电池,而与HJT技术的叠加则被称为“HBC”电池。

IBC电池技术是指一种背结背接触的太阳电池结构,其正负金属电极呈叉指状方式排列在电池背光面。由于对少子寿命的要求较高,IBC电池一般以N型硅片作为基底,前表面为N+前场区FSF,利用场钝化效应降低表面少子浓度,从而降低表面复合速率,同时还可以降低串联电阻,提升电子传输能力;背表面为采用扩散方式形成的叉指状排列的P+发射极和N++背场BSF,发射极能够与N型硅基底形成p-n结,有效分流载流子,n+背表面场区能够与n型硅形成高低结,增强载流子的分离能力,是IBC电池的核心技术;前后表面均采用SiO2/SiNx叠层膜作为钝化膜,抑制IBC太阳电池背表面的载流子复合;前表面常镀上减反射层,提高发电效率;金属接触部分全都在背面的正负电极接触区域,也呈叉指状排列。

IBC技术由SunPower提出,SunPower已成立36年,累计出货35亿片IBC电池片,拥有1000多个晶硅电池专利。1975年,Schwartz和Lammert首提背接触式光伏电池概念;1984年,斯坦福教授Swanson研发了IBC类似的点接触(Point Contact Cell,PCC)太阳电池,在聚光系统下转换效率19.7%;1985年Swanson教授创立SunPower,研发IBC电池;1993年,SunPower全背接触电池帮助本田赢得澳洲太阳能汽车挑战赛冠军;2004年,SunPower菲律宾工厂(25MW产能)规模量产第一代IBC电池,转换效率最高21.5%,组件价格5-6美金/瓦。

虽然距离SunPower推出第一代IBC电池已经相当时间,但是初代电池奠定了该种电池技术路线基本的电池结构和工艺框架:

(1)前表面无栅线遮挡。电池前表面采用陷光绒面,且无栅线遮挡,避免了金属电极遮光损失,最大化吸收入射光子,实现良好的短路电流;

(2)背面为P区和N区的叉指状间隔排列。电池背面制备呈叉指状间隔排列的p+区和n+区,以及在其上面分别形成金属化接触和栅线,由于消除了前表面发射极,前表面复合损失减少;

(3)一般采用较高质量的N型硅片。由于前表面远离背面p-n结,为了抑制前表面复合,需要更好的前表面钝化方案,同时需要具有长扩散长度的高质量硅片(如N型硅片),以降低少数载流子在到达背结之前的复合;

(4)与钝化接触技术相结合来提高电池性能。采用钝化接触或减少接触面积,大幅减少背面p+区和n+区与金属电极的接触复合损失;

(5)增加前表面场FSF。利用前表面场FSF的场钝化效应降低表面少子浓度,降低表面复合速率的同时还可以降低串联电阻,提升电子传输能力。

IBC独有的结构使其具有独特的优势

(1)外形美观。IBC电池发射区和基区的电极均处于背面,正面完全无栅线遮挡,尤其适用于光伏建筑一体化(BIPV)的应用场景以及对价格敏感度较低的家用场景,商业化前景较好。

(2)具有高转换效率的单面结构。IBC电池正面无遮挡结构消除了栅线遮挡造成的损失,实现了入射光子的最大化利用,较常规太阳能电池短路电流可提高7%左右,正负电极都在电池背面,不必考虑栅线遮挡问题,可适当加宽栅线比例,从而降低串联电阻,提高FF;由于正面无需考虑栅线遮光、金属接触等因素,可对表面钝化及表面陷光结构进行最优化设计,得到较低的前表面复合速率和表面反射,从而提高Voc和Jsc;短路电流、FF、Voc的提高使得正面无遮挡的IBC电池拥有了高转换效率;但是栅线都在背面的独特结构牺牲了电池的双面性,无法吸收经过地面反射的阳光,因此适用于光伏建筑一体化等无法利用背面发射光的应用场景。

由于IBC电池结构具有良好的兼容性,逐渐形成了三大工艺路线:

(1)以SunPower为代表的经典IBC电池工艺;

(2)以ISFH为代表的POLO-IBC(TBC)电池工艺;

(3)以Kaneka为代表的HBC电池工艺(IBC-SHJ)。

根据2017年Kaneka实验结果,目前IBC-SHJ(HJT)电池的转换效率最高可达到26.7%,高于TOPCon和HJT电池的实验效率。

产业内提高IBC电池转化效率的主要方向有:

(1)优化背电极接触区域,降低接触电阻;

(2)防止电池短路且性能最优,在电池背面p+和n+区域寻找合适宽度的本征区域;

(3)使用体寿命较高的n型硅片作为基体,对其前后表面制备良好的钝化层,保持较高的少子寿命;

(4)背面钝化层的引入需考虑背反射器的作用。

将钝化接触技术与IBC相结合,研发出TBC(Tunneling oxide passivated contact Back Contact)太阳电池,也就是上文所称的POLO-IBC;将非晶硅钝化技术与IBC相结合,开发出HBC太阳电池,二者均是通过应用载流子选择钝化接触可以抑制少数载流子在界面处的复合速度,进一步降低IBC电池的整体复合,从而有效提高IBC太阳电池表面钝化效果。

TBC电池主要是通过对IBC电池的背面进行优化设计,即用P+和N+的POLY-Si作为发射极和BSF,并在POLY-Si与掺杂层之间沉积一层隧穿氧化层SiO2,使其具有更低的复合,更好的接触,更高的转化效率。

技术迭代带动设备需求,利好激光和串焊环节

根据我们的测算,预计到2025年全球光伏电池产能将达到864GW,其中P型产线产能 占到70%,N型产能占到30%,若龙头企业能够将P型IBC产线顺利调试出货,其产能有望快速扩张,预计2025年P型IBC产能将达到97GW,占到 P型产线的16%,占到光伏电池总 产能的11.2%。

2021年光伏电池产能达到350GW,PERC产线扩张阶段性放缓,行业逐步切换至N型 TOPcon与IBC产能,预计2023年加速扩张,2024年HJT产能加速扩张,预计2022-2025年 光伏电池设备市场空间186/240/321/380亿元,增速分别7%/29%/34%/19%。

P型IBC对于激光类设备需求产生明显拉动。PERC类产品对于激光的需求主要集中在 激光消融设备上,该激光设备用于PERC背钝化量产线,SE掺杂设备用于磷掺杂选择性扩 散工艺,在PERC环节渗透率几乎达到100%,单GW PERC产线激光类设备价值量在1000- 1200万元左右,约占PERC产线价值量的6-8%。IBC产线在PERC产线的基础上进一步增加 了激光设备,预计激光设备约占IBC产线价值量的15%(暂不考虑激光转印),P型IBC产 能快速扩张将带动激光类设备增速提升。在N型电池中,TOPcon产线需要用到激光硼掺 杂设备来增加效率,预计单GW价值量约占TOPcon产线的10%,HJT产线采用LIA激光修复 技术,实现电池片抗光衰工艺,使太阳能电池具备抗光照衰减的能力,帝尔激光的LIA 激光修复技术已取得客户量产订单。

激光转印有望在高效电池中渗透率提升。激光转印的栅线更细,可以做到 18 微米 以下浆料节省 30%,在 PERC 上已经得到论证,在 TOPCon、HJT 等路线上的节省量会 更高;2)印刷高度一致性、均匀性优良,误差在 2μ m,低温银浆也同样适用;3) 可 以改变柔性膜的槽型,根据不同的电池结构,来实现即定的栅线形状,改善电性能;4)激光转印为非接触式印刷,可以避免挤压式印刷存在的隐裂、破片、污染、划伤等问 题。同时,未来硅片薄片化趋势,薄片化会带来更多隐裂问题,激光转印由于非接触式 印刷,可以解决此问题,我们认为激光类设备1-2年维度看IBC扩产带来的对于激光设备 需求提升,长期看激光转印渗透率提升。根据我们测算,2022-2025年光伏电池激光类设备市场空间将达到17/24/35/45亿 元,对应增速分别为25%/46%/47%/27%,预计2023、2024年激光类设备空间将加速提 升。

对于不同技术路线电池技术路线,组件端都需要用到串焊机。串焊机龙头奥特维布 局的串焊机可以覆盖市场上各种技术路线的工艺。奥特维在投资者关系记录表中提到,公司在2014年就推出了IBC串焊机,IBC串焊机和现有的串焊机有明显差异。串焊机需求 来自于新增组件产能与存量组件产能改造,我们认为随着N型TOPcon与IBC渗透率提升,存量产能改造比例将会有所提升,暂不考虑串焊机单GW价值量变化,预计2022-2025年 市场空间分别为47/58/73/91亿元,相应的增速分别为19%/23%/25%/25%。

本文来源:广发证券,口袋光伏,未来智库

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:细说光伏
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...