什么是“数字孪生”?关于数字孪生的具体应用

科技连连看 2021-10-22

虚拟技术人工智能

3801 字丨阅读本文需 9 分钟

随着中国制造强国战略的深入实施,新一代信息技术和人工智能技术与制造业深度融合,推动制造企业转型升级,大力发展智能制造。因此,“数字孪生”(Digital Twin)近期得到了广泛的关注,实现制造物理世界与信息世界的交互与共融,是当前国内外实践智能制造理念和目标的核心。

数字孪生以各领域日益庞大的数据为基本要素,借助发展迅速的建模仿真、人工智能、虚拟现实等先进技术,构建物理实体在虚拟空间中的数字孪生体,实现对物理实体的数字化管控与优化,开拓了企业数字化转型的可行思路。首先介绍了数字孪生的演进与价值,然后给出了数字孪生典型特征及其体系架构,并基于该架构介绍了多项数字孪生关键技术,最后对数字孪生进行了展望,包括其面临的挑战与未来发展趋势。

“数字孪生”概述

数字孪生中“孪生”的基本思想最早起源于上个世纪美国国家航空航天局(NASA)的阿波罗计划,通过留在地球上的航天器对发射到太空的航天器进行工作状态的仿真模拟,进而辅助航天员完成决策,明显减少了各种操作结果的未知性。

“数字孪生”一词首次出现于 2009 年美国空军研究实验室提出的“机身数字孪生体”概念中,而“数字孪生”作为独立概念首次出现则是在 2010年 NASA 的2份技术报告中,其被定义为集成多物理量、多尺度、多概率的系统或飞行器仿真过程。此后,数字孪生正式进入公众的视野,也开始得到各研究领域的重视。

2012 年,NASA 指出数字孪生是驱动未来飞行器发展的关键技术之一;2013年,NASA将数字孪生列入“全球科技愿景”;2017年佐治亚理工大学首次提出数字孪生城市,2018 年中国信通院发布了《数字孪生城市研究报告》;从 2018 年起,ISO、IEC、IEEE 三大标准化组织也开始着手数字孪生相关标准化工作。

数字孪生目前没有统一的理论体系,自其诞生以来,各研究与应用领域对其提出了多种定义,如表1所示。

表1  数字孪生定义

02

数字孪生的价值

数字孪生自应用以来,在产业、商业、社会等方面体现出了其重要的价值。

a)产业价值方面,构建全产业链的数字孪生体能够促进产业向制造与服务融合发展的新型产业形态转型,即从市场需求、用户沟通、产品设计、产品制造、物流供应、维保服务等全产业链出发构建数字孪生体,使传统产业具备定制化生产能力,实现更为敏捷和柔性的商业模式;而构建产品全生命周期的数字孪生体,有助于建立产品从研发、仿真、制造到使用的闭环体系,加快产品研发和迭代升级,进一步推动产业的发展。

b)商业价值方面,随着数字孪生技术得到各领域认可,很多科技企业已经着手研发数字孪生技术并推出了相关产品,这些产品在落地应用中不断升级优化,逐渐满足市场客户的实际需求,为企业带来了可观的经济效益,同时也促进了更多企业共同推动数字孪生产品的商业化;另一方面,企业构建产品全生命周期的数字孪生体,有助于改善产品设计、优化生产流程、快速定位问题,实现提高产品质量、降低生产成本、提升生产效率等目标,其也是数字孪生商业价值的重要体现。

c)社会价值方面,数字孪生能够推动社会数字经济的发展。数字经济是继农业经济、工业经济之后,随着信息技术革命发展而产生的一种新经济形态,其核心在于数据驱动发展,构建实体经济的数字孪生体,对数据整合及利用,进行模拟决策、资源配置、市场发掘等仿真与复现,在提高劳动生产率、发掘经济新增长点、实现经济可持续增长等方面发挥着重要作用。

数字孪生的具体应用

3.1 设备层应用

传统的单机设备制造流程为:方案布局→机械设计→程序/电气/软件设计→现场调试→交付使用,数字孪生的应用就是在设计阶段创建一个数字化的虚拟样机,将机械、程序、电气、软件进行同步设计,在虚拟环境中验证制造过程。发现问题后只需要在模型中进行修正即可,比如机械手发生干涉时,改变爪手的外形、输送带的位置、工作台的高度等,然后再次执行仿真,确保机构能正确执行任务。在虚拟调试完成后,使虚拟样机完整地映射到实际设备中,提高现场调试效率,缩短研发周期;虚拟样机的创建方法如下。

第一步:创建数字模型,借助市场上常见的CAD软件(CREO、SolidWorks、NX 等),在机械设计阶段能够高保真度地创建设备数字模型,这是数字孪生与物理实体的“形”。这里的“形”包含机构外观、零件尺寸、相对安装位置等。

第二步:创新虚拟信号,CAD模型往往是静态的,而现实的设备是动态的,通过运动仿真软件对设备的运动组件进行定义,并赋予其物理属性,设置虚拟信号定义其运动轨迹及限制范围、移动方向、速度、位移和旋转角度等,这是数字孪生与物理实体的“态”,保证数字孪生体与现实设备的各运动姿态统一是实现数字孪生技术的关键。

第三步:信号连接,基于PLC的虚拟仿真功能,将PLC程序中的I/O信号与虚拟信号进行连接,运行PLC程序,结合上位机的控制界面,对虚拟信号进行一一校核;这里的PLC连接包含软连接和硬连接两个部分,软连接是利用PLC本身的仿真模型功能,实现软对软的通讯,同时要求有实际硬件PLC时,基于以太网TCP/IP协议,实现硬对软的通讯。

第四步:虚拟调试,根据产品制造工艺测试和验证产品设计的合理性。在计算机上模拟整个生产过程,包括机器人和自动化设备、PLC、气缸、电机等单元。机器人单元模型创建完成就可以在虚拟世界中进行测试和验证。

3D模型只静态地展示设备的时代即将过去。数字孪生可以集合分析设备的设计、制造和运行的数据,并将其注入全新的设备设计模型中,使设计不断迭代优化。有了数字孪生,在前期就可以识别异常功能,从而在没有生产的时候,就以消除设备缺陷,提高质量。

3.2 产线层应用

产线设计中最难也是最耗费时间的是验证阶段,因为一个产品的生产由多个工序构成,每个工序输送系统的速度、加速度、间距等参数必须在负载下进行验证,验证其是否可行,而这个过程在传统意义上来说,需要实际物理装置装配好以后才能进行,利用生产线的数字孪生技术进行验证,模拟整个工艺流程,所有的机台协作之间是否按照原来设计的动作进行,通过将物理产线在数字空间进行复制,可以提前对安装、测试的工艺进行仿真。

借助数字孪生的记录和分析,在实际产线安装时,可以直接复制使用,从而大大降低安装成本,提高生产线各设备之间的连接效率。调整机器调试中的数据,可以用来优化生产,例如能耗、稼动率、产能等。这对于生产线而言,具有巨大的应用前景;为满足个性化、定制化的需求,还要求生产线具有高度的柔性化、智能化,新产品能否在现有的产线中加工,生产过程是否会出现异常,需要进行首件测试,在测试过程中还需进行零件换型,整个过程周期长、效率低,利用数字孪生体切换到离线模式,让PLC程序单独驱动虚拟生产线运行,在虚拟环境中提前验证新产品生产可行性及可能出现的问题,优化控制程序,修改换型零件,完成虚拟调试验证后,同步进行现实生产线的调整,让数字孪生体切换回在线模式,快速实现新产品、新工艺柔性生产线。

要实现产线层数字孪生,需要完成以下几个方面的内容:

(1)基于设备的数字孪生模型,将各个机台模型统一集中在同一虚拟空间,这对计算机硬件配置要求较高,普通计算机无法胜任大数据量模型的导入。数字模型的处理是重点,模型优化的程度很大程度上决定了产线层的数字孪生能否运行。

(2)模型在虚拟空间的运动模式需实现动力学控制,在虚拟空间建立重力场,赋予模型质量、惯量、摩擦、气压等物理属性。在虚拟验证阶段,发现可能出现的器件异常、机构干涉等,提前规避和处理,提高产线设计、制造、调试效率。

(3)各设备的PLC控制程序如果存在多个品牌,需要开发通用通讯接口,将各机台的信号数据汇总到中央控制系统数据库,通过数据库统一进行信号配置,以驱动各虚拟设备的执行组件,生产各环节的视觉控制系统、机器人控制器单元需将检测和位置状态信息进行模数变换,通过上位机数据库驱动虚拟机器人实现同步运行。

(4)网络集成和网络协同能力,将各个机台的设备运行数据、易损件使用次数,通过云计算技术统计、分析各设备的节拍与设计时序是否吻合,实时监控各个关键指标数据是否正常,实现数字孪生的远程运维和远程管理。

3.3 工厂层应用

在设备层和产线层的基础上,建立工厂层的数字孪生体,将物流的控制系统全部集成起来,形成计划、质量、物料、人员、设备的数字化管理。物料的管理主要包括出库、入库、盘点,物料的编号、数量可以在数字孪生平台中直观查看,建立真正意义上的数字化工厂。

数字化工厂结合MES系统,采集MES系统的数据驱动虚拟物料,AGV小车移动,实现虚拟世界与物理世界的同步运行。一旦工厂设备出现问题,在报警的过程中,数字孪生平台上可以迅速定位出问题发生环节点及具体位置,通过运用远端运维平台在手机端、平板电脑端实时查看工厂运行情况,预报功能会根据零件寿命来提示企业提前一周更换零部件,而不是发现零件停止工作之后再反馈工程师更换零部件。

为了实现卓越的智能制造,必须清楚了解生产规划以及执行情况。将在生产环节收集到的有效信息反馈至产品设计环节,搭建规划和执行的闭合环路,利用数字孪生模型将虚拟生产世界和现实生产世界结合起来,具体而言就是集成PLM系统、制造运营管理系统以及生产设备。将过程计划发布至制造执行系统之后,利用数字孪生模型生成详细的作业指导书,与生产设计全过程进行关联,这样一来如果发生任何变更,整个过程都会进行相应的更新,甚至还能从生产环境中收集有关生产执行情况的信息。此外还可以使用大数据技术,直接从生产设备中收集实时的质量数据,将这些信息覆盖在数字孪生模型上,对设计和实际制造结果进行比对,检查二者是否存在差异,找出存在差异的原因和解决方法,确保生产能完全按照规划来执行。

工厂层数字孪生一定是建立在产线层数字孪生的基础上的,通过与MES\ERP的数据通讯,加入智能仓储模型和AGV模型在工厂的运动轨迹,实现数字化工厂的建立,让虚拟工厂进入漫游模式,实时显示物流系统和自动化设备的运行数据。

结论

数字孪生技术在智能装备制造中的应用将飞速发展,智能工厂是未来发展的趋势,数字孪生技术作为智能工厂重要的组成部分,专注于实体设备和生产线的数字虚拟化,而随着大数据、云计算等技术的不断发展,数字孪生将逐步由设备工序数字化向流程系统数字化发展,即通过反复的模拟计算,自主生成数据资源库,并利用深度学习等人工智能技术,逐步实现数字孪生对于实体流程的自适应、自决策,从而在生产需求、业务场景发生新变化时,生产流程能够完成自发性的智能化、柔性化调整,进而真正实现智能工厂的无人化。

文章来源: 《现代信息科技》 ,邮电设计技术

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:科技连连看
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...