“高压物理界的圣杯”还要再等90年?揭秘金属氢鲜为人知的一面!

材料每日新鲜报 2021-10-26

金钢石金属氢钻石

3018 字丨阅读本文需 8 分钟

金属氢作为未来的一种高密度、高储能材料,一直是人类梦寐以求的能量物质。90多年来,人们一直在试图制造出以金属形态存在的氢气,并为此付出不懈努力,但稳定的金属氢样品始终没能得到。

从理论上来看,在超高压下得到金属氢是可能的。一旦梦想成真,将给世界科技带来革命性变化。不过,要真正得到金属氢样品,还有待科学家们进一步研究。

最诱人性能 传说具有室温超导能力

早在1935年,英国物理学家就预言,在一定的高压下,任何绝缘体都能变成导电的金属,不同材料转变成导电金属所需的压力不同。

金属氢指的是液态或固态氢在超高压下变成的导电体,由于导电是金属的特性,故称为“金属氢”。成功产生金属氢,不仅意味着人类找到了一种全新的高密度、高储能材料,而且可能会使科学技术发生革命性变化。

这一发现的意义如此巨大,以至于世界上多个研究小组都曾宣称自己成功获得了金属氢,但他们的竞争对手却又对此表示高度怀疑。

这种普通元素的“金属版”为何如此受重视?金属氢研究的倡导者列举了一些例子。比如,金属氢转化为氢分子时,会释放出大量热能,它可能成为一种突破性的火箭燃料。又如,据说像木星这样的气体巨星的核心就是由金属氢这类物质组成的,因此有行星科学家认为,如果我们能在实验室里成功制造出金属氢,也许就能更好地了解这些行星是如何形成的。不过,金属氢最吸引人的性能是传说中的室温超导能力——它允许电流在不损失任何能量的情况下流动。

澳大利亚的海伦·梅纳德·凯斯利说,基于所有这些原因,一项实验如果成功产生了金属氢,那将是轰动科学界的大事件,“我想金属氢的研究者都希望能获得诺贝尔奖”

金属氢被造出来了?

在新的研究中,Loubeyre和他的团队使用了一种被称为“金刚石压砧”的装置,他们将氢样本置于两个金刚石尖端之间,再对氢进行压缩。金刚石压砧是这类研究通常会采用的常规方法。但Loubeyre等人使用的是一种相对较新的金刚石压砧,被称为环形金刚石压砧,其特殊的金刚石尖端设计可以使其承受更高的压强。

他们发现,当压强越来越大,致密的氢在可见光下会开始变得越来越不透明,即其反射率越来越高。当压力超过300GPa(3000亿帕斯卡)时,只有能量比可见光低的电磁辐射,如红外光,可以穿透固态氢。

在80K的温度下,当压强增加到425GPa时,被压缩的氢样本的反射率急剧增加,可以阻隔所有的光。这意味着即便在红外线下它也开始变得不再透明。研究人员认为,固态氢的反射率在这种压强和温度条件下所呈现出的不连续的可逆变化,正是氢从固态转变成金属态的证据。

研究一经发表,就得到了许多相关领域研究人员的关注。大家普遍认为这一结果几乎是证明产生了金属氢的决定性证据,是一个里程碑式的发现,它将引领对氢的金属属性以及在更高的压强下所具有的属性展开进一步探索。

然而,宣布一项发现并非像打开电灯的开关一般简单,很多时候更像是在调节一个调光器。虽然目前这篇论文已经正式发表,但研究人员并没有断言他们已经观测到了金属氢。正如他们在论文标题中所强调的那样,他们看到的是“可能过渡到金属氢”的证据。

由于受到实验设备的灵敏度的限制,他们无法完全排除存在一个小的能带间隙的可能性,这是将材料转变成导体所需输入的少量能量。如果这样的能带间隙确实存在,那么就不能证明他们制造出了金属氢。虽然研究人员认为这样的能带间隙存在的可能性很小,但要真正确定制造出了金属氢,就必须彻底排除它存在的可能。

其实,若要确切地证明是否出现了金属氢,只需在高压下对氢样本的电导率进行测量。按照预期,固体氢应该表现出高水平的导电性能,且其导电性能会随着温度的升高而降低。然而,这是一项非常困难的测量,因为它需要将微型电极置于金刚石的尖端,只与少量的高压固态氢相接触。

在一项相关研究中,由Mikhail Eremets领导的研究小组在另一篇论文中报道了他们在350GPa和440GPa的压强之间对固体氢进行电导率测量的结果。结果显示,在这个压强区间,氢仍然以分子固体的形式存在,这意味着它的原子仍然结合在一起,而不是以处于一张自由移动电子的网中的原子核存在。

对此,Loubeyre回应道,不同研究所采用的压强测量方法也略有不同,根据他们自己的计算,他们认为Eremets团队测得的440GPa实际上可能在390 GPa左右。目前,搜索仍在继续。

金属氢样品 争议中诞生又“不小心”丢失

又过了13年时间,产生金属氢的目标终于达到了。事实上,最终压力已达495GPa,研究人员也目睹了氢获得金属性的过程。至少,美国哈佛大学两位研究人员迪亚斯和伊萨克·西维拉,于2017年在《科学》杂志上发表的一篇同行评议论文中是如此宣称的。在美国哈佛大学发布的一份新闻稿中,西维拉将这项成果称为“高压物理学的圣杯”。

但劳拜尔并不认可这样的说法。他在接受《自然》杂志采访时表示,“这篇论文根本没有说服力”。这是因为论文所谓获得的金属性,只是基于对氢的反射率的测量结果:在495GPa时,它变得发亮了。但还可能存在其他原因,比如金刚石尖端上氧化铝涂层在巨大的压力下,也有可能会改变氢的反射性。

而且,压力读数是根据金刚石在高压下的振动方式推断出来的,而非直接测量得到的,因此声称所获得的压力未能说服其他研究人员,劳拜尔认为压力可能不超过350GPa。

位于德国美因茨的马普化学研究所的米哈伊尔·埃雷梅茨也在尝试制造金属氢。他和同事亚历山大·德罗兹多夫表示,哈佛研究者所发表的数据中还找不到令人信服的金属氢证据,“除了引用来自钻石表面涂层反射率变化来表明可能性外,压力测量也模糊不清,并不明确”。

显然,现在需要做的是:重复实验。但说起来容易做起来难,因为这种实验是自毁式的。

迪亚斯和西维拉一直对氢样品的脆弱性很担心,这也是为什么他们限制测量数量和范围的原因。更重要的是,在公布了他们具有里程碑意义的成果,准备进一步研究时,他们发现样品消失不见了。

时隔两年之后,他们仍然不知道它发生了什么,金属氢的碎片——如果真的已转变为金属氢的话——只有10微米厚,可能是从两个金刚石砧的夹持下滑出,滑到仪器底部丢失了,或者也有可能是蒸发了。但他们仍然坚称“非常有信心,我们观察到了金属氢的存在”。

争论中前行 金属氢发现之门终将被打开

科学家之间的这场争论也为最终发现金属氢打开了大门。

2019年6月,劳拜尔在一篇题为“接近425GPa时向金属氢转变的一级相变观测结果”的论文中提出了他们的看法。这篇论文是他和在CEA的同事弗洛朗·奥塞利,以及法国同步加速器SOLEIL研究机构的保罗·杜玛斯共同撰写的。

“我们展示了在接近425GPa的压力条件下,一个从绝缘体分子固态氢到金属氢的相变。”他们认为,之所以能够达到这个压力,是因为奥塞利帮助开发了一种新的金刚石铁砧。

埃雷梅茨认为,这些观察结果很有趣,但远不是结论性的。迪亚斯指出,为了证明金属态的存在,这两件事中至少有一件要得到证明:一是证明当温度接近绝对零度时,电导率仍是限定的;二是证明材料的反射率随着波长的增加而增加——但他认为这两点都还没有显示出来。

迪亚斯还指出,许多观察结果,实际上其他研究团队以前已经看到过了。埃雷梅茨也说,这些“新”的结果中有很多都是以前报道过的,其中一些就是由他的研究团队报告的。

对于梅纳德·凯斯利这样的外部观察家来说,获得确切答案的唯一途径,就是等待他们的论文发表在同行评议的期刊上。“作为一名科学家,我不得不尊重同行评议的意见。”她说。

我们如何看待这些实验和争议呢?我们是否还要为未来的终极能源再等上90年?也许不会。迪亚斯和西维拉声称,他们重复了之前的实验,并观察到了同样的结果。“大约一年前,我们在高压下复制了一个样本,但由于技术原因,我们无法测量压力,所以我们没有发表。”西维拉说。

迪亚斯后来调到了美国罗切斯特大学,“我正在建造一个新的实验室,一个具备制造金属氢能力的实验室。我相信我们能够复制这项研究”。

科学家们不会被动等待,越来越多的人在为此而努力,虽然有可能同时会有三四个人在重复对方的工作,而且每个人都会声称自己是第一个。美国拉斯维加斯内华达大学研究高压系统的阿什坎·萨拉马特说:“开发金属氢是我们的共同目标。尽管我们不知道它会是液态还是固态,或者是室温超导体,我们现在需要做的就是共同努力来回答这些问题。”

文章来源: 文汇报,原理

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:材料每日新鲜报
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...