光与电联手缔造半导体“神话”,CPO技术打开全球数据中心大市场

3003 字丨阅读本文需 8 分钟

暴涨的云端数据中心需求,正催火一个新兴市场——共封装光学(CPO)。

随着人工智能(AI)、大数据、云计算等新兴应用风起云涌,这个源起高性能计算的互连技术,正发展成AI集群和大型数据中心计算集群提高传输速率、降低整体功耗的热门技术革新方向。

当前,亚马逊AWS、微软、Meta、谷歌等云计算巨头,思科、博通、Marvell、IBM、英特尔、英伟达、AMD、台积电、格芯、Ranovus等网络设备龙头及芯片龙头,均在前瞻性地布局CPO相关技术及产品,并推进CPO标准化工作。

不出意外,接下来两到三年,北美大型数据中心将出现大量可产品化的CPO技术。

在今年的国际光通信顶会OFC上,CPO也毫无争议地继续成为焦点话题,多家厂商展示其概念产品:如博通和英特尔围绕OIF CPO标准进行了联合静态展示,加拿大公司Ranovus和AMD展示了基于量子点光频梳光源和微环技术的低功耗模拟驱动800G CPO传输原型,多家硅光芯片商演示了800G/1.6T单芯片高度集成的可行性……

在可预见的将来,CPO走向成熟和商用后,不仅将改变光模块产业的竞争格局,还有望在数据中心和高性能计算领域掀起新的技术飓风。

CPO将光与电“合二为一”

我们认为,硅光子技术目前正在经历一场重要的技术革新,其中的核心技术就是协同封装光子(co-packaged optics,CPO)技术,使用该技术可以把硅光子模块和超大规模CMOS芯片以更紧密的形式封装在一起,从而在成本、功耗和尺寸上都进一步提升数据中心应用中的光互连技术。

CPO技术的主要是指把硅光模块和CMOS芯片用高级封装的形式(例如2.5D或者3D封装)集成在一起。在CPO技术兴起之前,目前的传统技术是把硅光模块和CMOS芯片独立成两个单独模块,然后在PCB板上连到一起。这么做的好处设计较为模块化,CMOS芯片或者硅光模块单独出问题的化都可以单独更换,但是在功耗、尺寸和成本上都较为不利。例如,由于硅光模块的输出是超高速数据,这些数据使用PCB板连接到CMOS芯片上会遇到较大的信号耗损,因此需要恨到的功耗才能支持高数据率。此外,成本上要设计支持超高速信号的PCB也需要较高的开销,而在尺寸上来说分立的硅光模组和CMOS芯片通常集成度更低,这也限制了进一步提升数据中心中的服务器密度。

而CPO就是为了解决这些问题的技术。当使用高级封装技术把硅光模块和CMOS芯片集成到同一个封装内之后,首先硅光模块和CMOS芯片之间的数据连接质量(信号耗损)相比PCB板来说要改善不少,因此能降低功耗;另一方面在大规模量产之后,高级封装也能带来成本上的改善。最后,使用CPO之后,由于都集成在同一个封装内,整体系统的集成度大大提升,尺寸减小,因此也能提升硅光子技术在数据中心应用场景的普及。

目前,众多硅光子领域有投资的巨头都在大力发展CPO技术。如前所述,硅光子技术带来超高速互联是人工智能等分布式高性能计算的核心技术,因此以数据中心为主要市场的公司如Nvidia和AMD都对于CPO有大量布局和投入。Nvidia自从收购Mellanox之后,也进一步强化了其在高性能光互连方面的能力,而在CPO方面Nvidia也公布了其目前的在研技术,即使用CPO技术把GPU和硅光子芯片集成在同一个封装内,以同时支持24路NVLINK,从而实现4.8Tbps的超高速互联。

而在数据中心中与Nvidia直接竞争的AMD则也在大力布局CPO技术,日前公布的和Ranovus的合作我们认为就是AMD对于CPO的重要投资。Ranovus是CPO领域的重要技术创新公司,它和TE Connectivity,IBM和Senko共同研发的CPO技术目前已经实现了把硅光子模块和收发模块以很高的集成度集成在同一块芯片中(而非常规的CPO技术中硅光子模块和收发模块仍然是两块单独的芯片),从而实现了更好的集成度和性能。Ranovus把自己的独特技术称为CPO 2.0,我们也预期AMD通过与Ranovus合作可以进一步提升自己在数据中心光互联领域的能力。

除了主要用于自家高性能计算系统的Nvidia和AMD,Broadcom和Marvell等重要的网络通信提供商也在硅光子和CPO领域有不少投入。Marvell刚刚在OFC大会上发布了其400G DR4硅光芯片,具有很高的集成度,包括收发模块和激光驱动模块,该芯片通过CPO技术和Marvell的Teralynx网络开关集成在一起,实现了超高数据带宽。

国内原生CPO标准,规格草案已初步完成

2020年,业界开始对发展CPO标准形成共识。

国外COBO和OIF等行业组织成立了工作组,国内中科院计算所牵头成立CCITA联盟(中国计算机互连技术联盟),为制订前沿互连技术标准筹备相关工作。

高旻圣谈道,在推动高速通信微型化、高密度集成与高通信容量技术往下一代演进的道路上,传统架构逐渐乏力,而制订CPO标准可以促进整体产业的升级及生态供应链的重组。

制订标准,是在共同约定规格的基础上形成广泛的社会分工。在郝沁汾看来,由于CPO光模块技术涉及互连互通,只有形成标准,各类组件技术厂商才能安心按照约定的标准规格设计开发各种组件,用户才敢采购CPO技术,这也是发挥各家专长、促进技术创新的必要条件。

现阶段,国内外CPO标准进程基本相近,均已初步完成规格草案的撰写。

CCITA联盟于2021年5月启动在中国电子标准化协会的国内CPO标准立项工作,联合了超过40家会员厂商,规划交换机及网卡CPO应用场景的规格标准。

在CCITA的诸多会员单位中,立讯技术是唯一一家同时涉及连接器和光电模块的业务单位,因此担任标准工作组的组长单位。

目前立讯技术已在国内及北美地区展开光模块业务,其100G/200G/400G硅光模块均已小批量生产,800G/1.6T硅光模块正在开发中。针对CPO专用芯片,立讯技术与国内外硅光芯片厂商进行联合开发,同时与自有连接器业务协同,在CPO中搭配应用其自研CPC(co-packaged copper)及PAM4 224G高速LGA/BGA连接器的产品。

与CPO标准同期启动的,还有我国的chiplet标准。此前芯东西曾在《绕开先进制程封锁!中国”小芯片”标准草案即将公示,独家对话郝沁汾》一文中进行详细解读。

这两个技术标准均是在芯片之间基于基板进行连接。不同之处在于,chiplet标准是电芯片间的连接,主要用于微电子芯片的新型架构设计,CPO标准是电芯片和光芯片的连接与混合集成,用于实现微电子芯片的高速光I/O。

值得注意的是,CCITA牵头的CPO标准,是当前中国唯一原生的CPO技术标准。

其目的是结合目前国内外在光互连技术发展及应用场景的差异,联合国内光模块、光收发芯片、电驱动放大芯片、光源、连接器等厂商,联合打造更加适合我国的CPO标准,借助标准形成广泛的光技术产业链条分工,以推动我国在光电子技术和产业方面的可持续发展。

据郝沁汾介绍,从应用场景来看,此前由国外厂商发起的OIF标准,仅关注了交换机侧的CPO模块厂商,其模块的带宽规格为3.2Tbps,具体实现为8x400G芯片。

而CCITA的CPO标准通过对现有AOC等前面板可插拔光模块标准进行分析,同时考虑了交换机和服务器一侧网卡的CPO模块规格制定,交换机一侧的模块带宽规格为1.6Tbps,具体实现为2x800G芯片(单通道112G),因此交换机一侧的MAC层实现约定为800G,在服务器网卡一侧的CPO模块其带宽为400Gbps,为400G单芯片实现。

目前,包括1.6Tbps(2x800G)交换机侧技术规格和400G服务器侧CPO技术规格的标准草案已完成,接下来将收集各会员单位针对标准草案的建议来陆续完善工作,并安排多厂商互操作性联合技术验证。

数据中心发展引发CPO需求增长

近年来数据中心规模不断扩大,对带宽容量的需求巨大;许多超大型和云数据中心预计在未来几年将采用100G的服务器端口速度。这些更高的服务器速度可以由2芯或8芯并行光收发器来实现40G、100G、200G和400G通道速率。而包括800G在内的这些技术的不断研发与应用,同样扩大了CPO的应用面。

据了解,CPO涉及到几个核心的技术:高集成度的光芯片、光电混合封装技术及低功耗高速SerDes接口。由此可见,CPO技术虽然对数据中心用户能够带来不俗的吸引力,但要推动CPO的广泛应用,需要芯片、封装、硅光领域的多重合作,共同努力。当然,在另一方面来说,CPO市场的扩大,也能够带动这些不同产业的共同发展。

在目前来看,对CPO系统的可靠性、可生产制造性、是否能提供足够高的带宽、成本是否降低等方面,仍存在一定的质疑声,但在如何降低数据传输的功耗与成本成为行业痛点的当下,CPO技术得到一定的青睐也不足为奇。

事实上,根据CIR的报告,基于CPO的设备最初将用于超大规模数据中心,到2023年,来自该应用市场的收入将占CPO总收入的80%。此外,随着“元宇宙”概念的提出,AR/VR作为元宇宙终端,对5G、云计算这些支撑产业提出了较高的速率要求,也同样带动了数据中心的发展,同样的也催生了对CPO的需求。

总的来说,CPO具有其存在的意义,也有着较为可观的应用前景。虽然现在CPO技术仍存在着一定的技术壁垒,但其表现出的优点,使得其吸引了全球范围内数家芯片制造商,如Intel、Marvell、博通等厂商对CPO和硅光技术进行投资,这也意味着CPO市场值得行业的一定关注。

文章来源:芯东西,半导体行业观察,光电通信

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处本网。非本网作品均来自其他媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如您发现有任何侵权内容,请依照下方联系方式进行沟通,我们将第一时间进行处理。

0赞 好资讯,需要你的鼓励
来自:微观人
0

参与评论

登录后参与讨论 0/1000

为你推荐

加载中...